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ABSTRACT 
Model Driven Engineering is based on a number of principles that 
may be applied in different contexts. Nowadays several 
environments employ the MDE principles: Model Driven 
Architecture (MDA™), Eclipse Modeling Framework (EMF), 
Microsoft Domain-Specific Language tools (MS/DSL), and many 
more. Focusing only on one context and ignoring other 
environments and platforms, based on different conventions, 
standards or protocols would be unwise because one of the 
desired properties of models is their ability to be exchanged 
between different contexts. Due to their abstraction expression 
level, models should ideally be more adaptable to various 
operational environments than conventional code. In other words, 
OMG models and Microsoft models among others should be able 
to be exchanged between the corresponding environments. In this 
paper we focus on exchange of models created in these two major 
industrial platforms: EMF and Microsoft DSL.  The capability to 
exchange models between an EMF and a corresponding MS/DSL 
based system requires an abstract understanding of both 
architectures and a precise organization of the interoperability 
scheme. This paper describes the first results of a project in this 
area and presents the lessons learnt in this work. 
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1. INTRODUCTION 
In November 2000 the OMG proposed a new approach to 
interoperability named MDA™ (Model-Driven Architecture) 
[13]. MDA is one realization of the broader vision of Model 
Driven Engineering (MDE) that encompasses current research 
trends related to generative and transformational techniques in 
software engineering, system engineering, and data engineering. 
Considering models as first class entities and any software artifact 
as a model or as a model element is one of the basic principles of 
MDE. The key ideas of MDE are germane to other approaches 
such as domain-specific languages (DSLs), software factories, 
model-integrated computing (MIC), model-driven software 
development (MDSD), model management, language-oriented 
programming [3], and many more.  

 
Figure 1 MDE principles, standards and tools. 

The OMG MDA initial proposal implements the principles of 
MDE around a set of OMG standards such as MOF, XMI, OCL, 
UML, CWM, and SPEM. Based on similar principles but 
sometimes on different standards (Figure 1), several other related 
technical spaces [9] have also been proposed like Microsoft 
Software Factories Tools (MS/DSL) [6], Generic Modeling 
Environment (GME) [14], Coral [12] and many others. 

These spaces are not isolated from each other and should be 
allowed to communicate by exchanging artifacts. In this paper we 
will focus on two of those spaces and the possible links between 
them: MS/DSL and Eclipse Modeling Framework (EMF). The 
concept of bridge is used to denote the capability of 
communication between two spaces. If a bridge is available 
between spaces then it is possible to import an artifact from one 
space to the other and vice-versa. 

To implement a bridge between MS/DSL and EMF we use the 
functionalities provided by the AMMA (ATLAS Model 
Management Architecture) model engineering platform. AMMA 
is built on top of the Eclipse Modeling Framework and consists of 
four different components. The component that plays the most 
important role in the bridge implementation presented in this 
paper is a model transformation language named ATL (ATLAS 
Transformation Language). 

The bridge between MS/DSL and EMF spans two levels: 
metamodel and model level. At the level of metamodels it allows 
to transform MS/DSL domain models to EMF metamodels. At the 
level of models the bridge allows transforming MS/DSL models 
conforming to domain models to EMF models conforming to 
EMF metamodels. At both levels the bridge operates in both 
directions. A chain of ATL-based transformations is used to 
implement the bridge at these two levels. The benefit of using 
such a bridge is the ability to transpose MS/DSL work in EMF 
platform, and vice-versa. 

While pursuing this objective we realized the need of systematic 
methods to build bridges between similar or different technical 
spaces. The lessons learnt in the realization of the bridge between 
EMF and MS/DSL environments are very helpful in building of 



other exchange schemes between similar platforms, for example 
between GME and EMF. 

This paper is organized as follows. In section 2 we describe the 
platforms used in this work: MS/DSL, EMF and AMMA. Section 
3 presents the metametamodels of these platforms and the basic 
functionality of the bridge. Section 4 explains the operation of the 
bridge at the metamodel level, and Section 5 shows the operation 
at the model level. Section 6 concludes the paper. 

2. EMF, MS/DSL and the AMMA Platform 
The two main industrial references of MDE are currently EMF 
and MS/DSL Tools. AMMA extends the EMF facilities in a 
number of ways. By design AMMA integrates the notion of 
technical space, i.e. the possibility to interoperate with other MDE 
and non-MDE environments. This section provides a brief 
introduction to EMF, MS/DSL Tools and AMMA.   

2.1 EMF 
EMF is a modeling framework and code generation facility for 
building tools and applications based on a structured data model. 
The following description is adapted from [4]. On the base of a 
model specification expressed in XMI, EMF provides tools and 
runtime support to produce a set of Java classes for the model, a 
set of adapter classes that enable viewing and command-based 
editing of the model, and a basic editor. Models can be specified 
using annotated Java, XML documents, or modeling tools like 
Rational Rose, and then imported into EMF. An important feature 
of EMF is that it provides the foundation for interoperability with 
other EMF-based tools and applications. EMF consists of three 
fundamental parts:  

- EMF - The core EMF framework includes a metamodel 
(Ecore) for describing models and runtime support for 
the models including change notification, persistence 
support with default XMI serialization, and a very 
efficient reflective API for manipulating EMF objects 
generically. 

- EMF.Edit - The EMF.Edit framework includes generic 
reusable classes for building editors for EMF models. 

- EMF.Codegen - The EMF code generation facility is 
capable of generating everything needed to build a 
complete editor for an EMF model. It includes a GUI 
from which generation options can be specified, and 
generators can be invoked. The generation facility 
leverages the JDT (Java Development Tooling) 
component of Eclipse. 

Three levels of code generation are supported:  

- Model - provides Java interfaces and implementation 
classes for all the classes in the model, plus a factory and 
package (meta data) implementation class. 

- Adapters - generates implementation classes (called 
ItemProviders) that adapt the model classes for editing 
and display. 

- Editor - produces a properly structured editor that 
conforms to the recommended style for Eclipse EMF 
model editors and serves as a point from which to start 
customizing. 

2.2 MS/DSL  
The Microsoft Tools for Domain-Specific Languages is a suite of 
tools for creating, editing, visualizing, and using domain-specific 
data for automating the enterprise software development process. 
These new tools are part of a vision for realizing software 
factories [6]. The latest version is May 2005 CTP release for 
Visual Studio 2005 Beta 2. 

As described in [10], the suite of tools is supported by a code 
framework that makes it easier to define domain models and to 
construct a custom graphical designer hosted in Visual Studio. 
The suite consists of: 

- A project wizard for creating a fully configured solution 
in which one can define a domain model that consists of 
a designer and a textual artifact generator. Running a 
completed solution within Visual Studio opens a test 
solution in a separate instance of Visual Studio, allowing 
testing the designer and artifact generator. 

- A format and an updated graphical designer for defining 
and editing domain models. 

- An XML format for creating designer definitions, from 
which the code for implementing designers is generated. 
This allows defining a graphical designer hosted in 
Visual Studio without any hand coding. 

- A set of code generators, which take a domain model 
definition and a designer definition as input, and produce 
code that implements both components as output. The 
code generators also validate the domain model and 
designer definition and raise errors and warnings 
accordingly. 

- A framework for defining template-based artifact 
generators, which takes data (models) conforming to a 
domain model as input, and outputs text based on the 
template. Parameters in the template are substituted using 
the results of running a C# script embedded in the 
template. 

2.3 AMMA 
Currently built on top of EMF, AMMA [2] brings additional 
functionalities and could be implemented on top of other MDE 
environments. AMMA has both local and distributed 
implementations and is based on four blocks providing a set of 
model processing facilities: 

- Atlas Transformation Language (ATL) [1][8]defines 
model transformation facilities for a QVT-like language: 
a transformation virtual machine, a metamodel based 
compiler, an editor based on Eclipse, and a debugging 
environment. 

- Atlas ModelWeaver (AMW) makes it possible to 
establish links between the elements of two (or more) 
different models. 

- Atlas MegaModel Management (AM3) defines the way 
the metadata is managed in AMMA (registry on the 
models, metamodels, and tools). 

- Atlas Technical Projectors (ATP) defines a set of 
injectors/extractors enabling to import/export models 



from/to foreign technical spaces (for instance Java 
classes, relational models). 

2.4 Global overview of bridging 
Before explaining the implementation of the bridge between 
MS/DSL tools and EMF we give the overall idea behind the 
project. The bridge performs transformations at two levels: M2 
level (metamodel level) and M1 level (model level). Figure 2 
provides an overview of the approach. 
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Figure 2 Global overview of the two level bridging 

 

To make a complete bridge between MS/DSL and EMF we must 
establish the correspondence between those platforms, at three 
metamodeling levels: M3, M2 and M1. The M3 level mapping 
allows establishing correspondences between metametamodels. 
With these correspondences we can perform the M2 level 
bridging that transforms domain models to Ecore metamodels. 
The M1 level bridging transforms MS/DSL models to Ecore 
models and vice-versa. 

3. M3-level mapping 
To enable mapping between MS/DSL and EMF we need a 
definition of each system at the M3 (i.e. metametamodel) level. 
Microsoft does not specify an explicit metametamodel for DSL 
designer, so we had to discover it by observation. The 
metametamodel of AMMA platform is called KM3. KM3 is used 
as a mediator between the Ecore and the DSL metametamodel. If 
we build a mapping between MS/DSL metametamodel and KM3 
we can reuse the existing mapping between KM3 and Ecore to 
obtain the mapping between MS/DSL and Ecore as a composition 
of two mappings. KM3 and the MS/DSL metametamodel are 
explained in the rest of this section. 

3.1 KM3: Kernel MetaMetaModel 
KM3 [1], [5] is a metametamodel close to Ecore and EMOF 2.0. 
A simplified version is presented in Figure 3. We use it instead of 
Ecore because we need to work with several other 
metametamodels such as MOF 1.4. KM3 uses a Java-like textual 
notation for expressing metamodels. A similar approach is also 
proposed by Emfatic [7], a language for representing Eclipse 
Modeling Framework Ecore Models in textual forms but the focus 
of KM3 is much broader than simply EMF. Of course several 
ATL transformations of KM3 notation to or from other notations 
are available.   
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Figure 3 Simplified version of the KM3 metametamodel 

 

KM3 may thus be used as a pivot between various 
metametamodels as illustrated by Figure 4.  

KM3
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MOF 1.4

 
Figure 4 Use of KM3 as a pivot 

 

The AMMA platform provides mappings between KM3 and other 
metametamodels. This enables easy mapping of a newly added 
metametamodel to the existing ones. 

3.2 DSL metametamodel 
The equivalent of a metamodel in the Microsoft world is called a 
“domain model”. It is composed of a class hierarchy and 
relationships. From our initial experience with Microsoft’s tools 
we inferred a DSL metametamodel. The result is expressed in 
Ecore and is shown in Figure 5. 
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Figure 5 Simplified version of the DSL metametamodel 
 



A relationship may be a simple reference or an embedded relation 
(similar to composition in UML terms). It has properties and may 
have a supertype. A relationship has two roles, but a future 
version of DSL Tools may propose relationships with n roles. 

3.3 Comparison between KM3 and DSL 
With those diagrams, we can compare KM3 and DSL with each 
other. The following observations may be made: 

- KM3 and DSL Classes are almost equivalent, and have 
the same characteristics, except supertypes: KM3 allows 
multiple inheritance whereas DSL does not. 

- A KM3 Attribute is equivalent to a DSL ValueProperty. 

- DSL roles can be mapped to KM3 References, but the 
latter are not affiliated with a Relationship like in DSL. 
References are contained in their owner and linked to 
their opposite reference. If the owning relationship of a 
pair of roles is embedded then one of the associated 
KM3 references is a container. 

- DSL Relationships and DSL Classes have the same 
properties: relationships may be linked to each other, 
have a supertype and attributes. There is no direct 
equivalent of DSL Relationship in KM3. We can 
consider simple relationships (with no supertype or 
attribute) as corresponding to a pair of references while 
complex relationships correspond to classes. 

- On the basis of this analysis we can establish mappings 
between DSL and KM3. Mappings are used to perform 
M2-level bridging and are operationalized in ATL 
language. 

4. M2-level bridging 
After establishing the mappings between DSL and KM3, we can 
use ATL to transform domain models into KM3 models and into 
EMF metamodels with an additional transformation from KM3 to 
Ecore. A detailed overview of the M2-level bridge is given in 
Figure 6.  
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Figure 6 M2-level bridge overview 

We have already shown the DSL metametamodel expressed in 
Ecore. KM3 may also be expressed as an Ecore metamodel. The 
ATL language is capable of specifying transformations on Ecore 
models conforming to Ecore metamodels. Therefore we can 
transform DSL domain models into KM3 models. KM3 models 
may be transformed into Ecore metamodels (recall that there exist 
a reusable transformation between KM3 and Ecore). In summary, 

we can apply a chain of ATL transformations to implement the 
M2 level bridge. However, first we have to obtain a representation 
of a DSL domain model as an Ecore model. 

The transformation chain for the first direction of the bridge 
contains four steps. First, a domain model MMa (defined in DSL 
Tools) is transformed to an XML representation conforming to the 
XML metamodel. After that, the model is transformed using ATL 
to conform to DSL metametamodel expressed in Ecore, and then 
to a model conforming to KM3. The final step is the promotion of 
this model using KM32Ecore transformation, which creates the 
MMa EMF metamodel conforming to Ecore. This operation is 
called promotion since the result lies at a higher level in the 
metamodeling hierarchy compared to its source. The inverse 
transformations from Ecore to DSL are also defined. 

In fact we build two transformation chains: from DSL to KM3 
and from KM3 to DSL. Since KM3 acts as a pivot between our 
metametamodels we already have the transformations to and from 
Ecore. The following subsections explain in detail these 
transformation chains. 

4.1 First transformation chain: DSL to Ecore  
To make the transformation we proceed in three steps. They are 
detailed below. 

4.1.1 First step: XML2DSL 
We have to get information from a .dsldm file into a DSL 
metamodel. We inject the .dsldm file into an XMI file conforming 
to an XML metamodel, using an XML injector. An ATL 
transformation is then applied to capture information from the 
XML file to a model which conforms to the DSL metametamodel 
previously described.  

The main work of this transformation is a mapping between 
.dsldm features (concepts, relationships, roles, enumerations, 
properties, etc.) and our DSL model. 

4.1.2 Second step: DSL2KM3 
In this step we transform the DSL model to a KM3 metamodel, 
using another ATL transformation. By splitting the transformation 
from XML to KM3 in two steps we first reduce the complexity of 
the transformation and second, we achieve a reusability of the 
transformation from XML to DSL and vice-versa. 

In the DSL2KM3 transformation, DSL classes are mapped to 
KM3 classes, like simple types and properties. We encountered 
several problems due to the differences between DSL and KM3 
metamodels explained in section 3.3: 

- In DSL, a Relationship is defined like a Class, with the 
same properties. 

- In KM3, a Relationship between two Classes is encoded 
by two references into adjoining classes. 

We found two solutions to this problem: 

Solution 1: We can ignore all specific properties of the 
Relationship except roles and type of containment. 

Solution 2: We can turn the Relationship into a KM3 class, and 
keep the attributes, supertypes, and other features. 



In both cases some information is lost. In solution 1 we loose 
Relationship features. In solution 2 we loose track of the fact that 
the source element is a Relationship. Transformation of the 
resulting KM3 metamodel back into a DSL metamodel produces a 
DSL metamodel, which contains less information than the original 
one. We may cope with this issue by keeping the information that 
cannot be represented in KM3 into an additional model. This 
information would then be used by an enhanced version of 
KM32DSL. 

To apply our solutions, we can classify DSL Relationships in two 
types: 

- Simple Relationship:  

If a relationship does not have any supertype or attribute then we 
can ignore the name and transform the relationship into a couple 
of KM3 references. Using solution 1 the roles of a relation are 
mapped to KM3 references. 

- Complex Relationship:  

If the relationship has attributes, supertypes, or subtypes, we turn 
it into a KM3 class (using solution 2), and we create two pairs of 
references to link it to the classes referenced by its roles, like in 
Figure 7. 

 

 source   type

 
Figure 7 An example of Complex Relationship treatment 

4.1.3 Third step: KM32Ecore 
Using the existing transformation KM32Ecore, we get a 
metamodel conforming to EMF. We can now use this model 
within any EMF compatible tool, for example, Omondo’s 
EclipseUML plug-in. With this last step the first direction of the 
M2-level bridge is completed.  

4.2 Second transformation chain: Ecore to 
DSL 
We start this transformation with a model which conforms to 
KM3, and want to transpose it into a DSL tools model. To achieve 
the transformation we proceed in three steps detailed below. 

4.2.1 First step: KM32DSL 
When we transform our initial model (which is expressed in 
KM3) into a model which conforms to our DSL metamodel, we 
find problems similar to the one explained in section 4.1.2. 

KM3 doesn’t implement Relationships, so we have to create them 
from pairs of KM3 References. 

Some attributes of DSL don’t have correspondence in KM3, so 
we create them using default values, and we generate single 
identities. 

4.2.2 Second step: DSL2XML 
We transform the result from the previous step into a model 
conforming to XML, which defines a .dsldm like file. Figure 8 
shows a simple metamodel of .dsldm file. The gray boxes show 
what is added from scratch when we make the transformation and 
the white ones show what is supported by our DSL 
metametamodel. 
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Figure 8 Simple metamodel of .dsldm file 

We use an ATL transformation, which creates an XML model 
similar to a .dsldm file. 

To be able to build diagrams as trees, DSL Tools needs to satisfy 
some constraints which are specified in the tree navigators. For 
instance we must signal if a class needs to appear several times, or 
if a class needs to be considered as a root class (if it must appear 
on the left side of the diagram). 

4.2.3 Third step: XML2Text 
We use existing XML to text transformation to create a .dsldm file 
that will be included into a "blank project" for DSL Tools, by 
replacing the .dsldm file. 

5. M1-level bridging 
M1 level bridge allows transforming DSL models to and from 
EMF models. We describe such a tool in this section. 

First we have to know how models are viewed by the two 
technologies. Basically a model has to conform to a domain 
model in context of MS/DSL and to an Ecore metamodel for 
EMF.  

To store models, Microsoft uses XML documents that conform to 
an XML schema, which does not directly map to the domain 
model. With EMF, the models are stored in XMI format and 
explicitly conform to a metamodel. 

To implement the M1-level bridge we have to transform a DSL 
model file to a model that conforms to a metamodel defined under 
EMF. To do this we have to make a metamodel for the DSL 
models. 

The problem is that if we write a transformation between the DSL 
metamodel and the metamodel in EMF, we’ll have to write a 
transformation per EMF metamodel. This approach is not general. 
We need a transformation that works for any EMF metamodel. 
How this is done is explained below in section 5.4. 



We will use ATL as in the M2-level bridge. The process will be 
performed in three steps, as shown in Figure 9. For simplicity we 
only describe the transformation chain from DSL to EMF: 

- The first step consists of injecting the DSL model file Ma 
to an XML model. 

- In the second step we transform the XML model into a 
model conforming to the DSL models metamodel (named 
DSLModel in Figure 9). DSLModel was defined to 
match Microsoft’s schema as closely as possible. 

- In the third step we apply an ATL transformation that 
takes as input a DSL model Ma and the metamodel MMa 
defined under EMF and output a model Ma that 
conforms to the model MMa. 
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Figure 9 M1-level bridging overview 

In the remaining part of this section we give details on the DSL 
models metamodel and the three steps outlined above. 

5.1 The DSL models metamodel 
We created a metamodel close to the schema used by Microsoft to 
store DSL models as XML files. This metamodel is called 
DSLModel and is shown in Figure 10. 
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Figure 10 The metamodel DSLModel 

In this metamodel the attribute type of class Element contains the 
name of the class from the domain model that is instantiated in the 
model. A model element has properties that correspond to 
attributes in domain model, a reference link is a reference 
relationship and an embedding link is an embedded relationship. 

5.2 First step: Inject XML file to XML model 
The first step injects the XML file containing the DSL model 
definition into an XML model that conforms to the XML 
metamodel. 

5.3 Second step: XML2DSLModel 
The second step transforms the XML model to a model that 
conforms to DSLModel. We use an ATL transformation to do it 
(XML2DSLModel in Figure 9). 

5.4 Third step: DSLModel2EMFModel 
The last step has to produce a model conforming to its EMF-
metamodel. This metamodel varies so if we write a transformation 
between DSLModel and the metamodel it will work for only one 
concrete EMF metamodel. To obtain a generic transformation 
definition that works for every target metamodel we proceed in 
two steps shown in Figure 11.  
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Figure 11. Overview of Step 3 

The first step is to apply an ATL transformation (Generate ATL 
model in Figure 11) that takes as input an EMF metamodel and 
generates an ATL transformation (DSLModel to EMFModel in 
Figure 11). The generated transformation contains the necessary 
rules to produce a model conforming to the EMF metamodel. This 
solution is generic and works for any EMF metamodel. The 
second step is to apply the generated transformation in order to 
obtain an EMF model Ma from the DSL model Ma. 

In the first step we use the fact that transformation definitions are 
also models and therefore may be generated by a transformation. 
In other words we create a higher-order transformation to solve 
the problem with the generality of our solution. 

6. Conclusions 
This paper has reported on an experiment of practical interest: 
building operational bridges between two industrial MDE 
platforms: MS/DSL tools and EMF. Since EMF is often 
considered as one of the major implementations of OMG 
standards, the resulting tools are of high potential utility to make 
the MS world and the OMG world communicate in the domain of 
model engineering.  

We have seen that achieving model interoperability is much more 
complex than simply defining a local serialization format in a 
local context like XMI. 

However the value of this work goes much beyond mere 
practicality. It shows that different kinds of models may be 
exchanged between different technical spaces. It suggests a 
general way to building bridges between different spaces. 
Knowing the rising fragmentation in current technologies, this 
issue will probably become increasingly important in the future. 



Interoperability is a horizon that moves farther and farther as one 
tries to come closer. The conviction that there will never be a 
unique operating system, a unique programming language, a 
unique database management system or a unique network 
framework has convinced organization like OMG to consider 
heterogeneity as inherent to IT and to pursue interoperability as a 
main goal. The limits of code-based or middleware-based 
interoperability have been reached with proposals such as 
CORBA and IDL to hide operating system or programming 
language heterogeneity in distributed applications. The existence 
of several de-facto middleware-like frameworks is now a reality.  

Model-based interoperability is trying to approach the problem at 
a higher abstraction level.  Using one unique and rather 
monolithic language like UML 2.0 is not very realistic. Instead 
the solution is to use a metalanguage building system like MOF, 
allowing defining a set of domain-specific languages through 
metamodels like UML, SPEM, CWM, EDOC. This seemed to   be 
the current state of the art in model engineering until recently. 

Unfortunately the situation is no more so clear and the MOF-
based metamodel building system proposed by OMG will 
probably face several new competitors. Some of them like EMF 
are really close but other are making quite different assumptions 
on what should be in a metametamodel. Similarly to CORBA that 
had to cope with different middleware proposals, MOF, XMI and 
OCL may also have to cope with different other metamodeling 
proposals, sometimes with apparent advantages. The present work 
addresses at the same time some conceptual and practical issues 
raised by this situation. 

The naive answer to this situation could be to build an additional 
M4 metamodeling layer, but obviously this is not a serious 
suggestion. Instead we have to prepare a systematic and methodic 
bridging approach between different representation systems (such 
as MOF, MS/DSL, XML, EBNF). This is possible because the 
number of such technical spaces (based on trees, graphs, or other 
simple algebraic structures) is limited and by considering all these 
spaces as having a three-level organization (M1, M2, M3), it is 
possible to keep this diversity of technical space representation 
under control.  

The only alternative to this solution would be to wait that one 
technical space prevails on the other ones by making them 
obsolete. By experience and observation we know that this will 
never happen. We thus propose to improve bridging schemes such 
as the one presented in this paper and to hide as much as possible 
their implementation complexity to the end-users. When a user 
will be allowed to work indifferently with an XML-schema, an 
EBNF-grammar, a MOF-metamodel or a MS/DSL Domain 
Model, and when the differences in representation will be made 
transparent, he/she may be able to work on solving the real 
problems and not curing the artificial problems introduced by 
increasingly fragmented and complex technology. 
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