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ABSTRACT
Software factories have been proposed as a comprehensive
and integrative approach to generative software develop-
ment. Feature modeling has several applications in gen-
erative software development, including domain analysis,
product-line scoping, and feature-based product specifica-
tion. This paper reports on our recent progress in cardinality-
based feature modeling and its support for expressing ad-
ditional constraints. We show that the Object-Constraint
Language (OCL) can adequately capture such constraints.
Furthermore, we identify a set of facilities based on con-
straint satisfaction that can be provided by feature modeling
and feature-based configuration tools and present a proto-
type implementing some of these facilities. We report on our
experience with the prototype and give directions for future
work.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions—Tools; D.2.2 [Software Engineering]: Design Tools
and Techniques—Computer-aided software engineering (CA-
SE); D.2.13 [Software Engineering]: Reusable Software—
Domain engineering, Reuse models

General Terms
Design, Documentation

Keywords
Feature modeling, model-driven development, product con-
figuration, constraint satisfaction, software-product lines, vari-
ability management

1. INTRODUCTION
Generative software development [10, 4, 11] aims at au-

tomating product development in the context of software
product line engineering. Software product line engineer-
ing [8, 26] eases the development of products within an ap-
plication domain by leveraging the commonalities among
these products while managing the differences among them
in a systematic way. As a result, individual products can
be created by reusing assets, such as models, components,
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platforms, generators, documentation, etc., that are cre-
ated within a separate product-line development process.
Generative approaches aim at automating the product de-
velopment part of product-line engineering by means of a
wide range of static and dynamic technologies, including
metaprogramming, reflection, program and model analysis,
constraint-based configuration, and aspect-oriented techni-
ques.

Software Factories [16] can be viewed as a comprehen-
sive and integrative approach to generative software devel-
opment, as they both share the same goal of automating
product development in the context of software product line
engineering. A particular strength of the Software Factory
approach is its support for different degrees of automation in
product development. The approach recognizes that domain
knowledge may exist at different maturity levels and thus
a wide range of concepts, such as patterns, architectures,
frameworks, components, aspects, and domain-specific lan-
guages, etc., may be required for adequately packaging the
knowledge as reusable assets.

Feature modeling is a technique for managing commonal-
ities and variabilities within a product line. The technique
has numerous applications in the context of generative ap-
proaches. Among others, it can be used to

• capture the results of domain analysis;

• facilitate scoping of product lines, domain-specific lan-
guage families, components, platforms, and other reus-
able assets; and

• provide a basis for automated configuration of concrete
products, languages, components, platforms, etc.

There has been a significant amount of progress on the no-
tation, processes and techniques, tools, and applications of
feature modeling since feature modeling was first proposed
by Kang et al. [17] (see [13, Section 2] for an extensive set
of bibliographic references related to feature modeling).

In this paper we report on our recent progress on a par-
ticular form of feature modeling, which is referred to as
cardinality-based [12], the means of expressing additional
constraints for cardinality-based feature modeling, and cons-
traint-satisfaction facilities for feature modeling and feature-
based configuration tools.

The main contributions of this paper are the following.

1. We analyze what is required from a notation for ex-
pressing additional constraints on cardinality-based fea-
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Figure 1: A sample feature model

ture models. We argue that Object Constraint Lan-
guage (OCL) [20] is adequate for expressing such con-
straints and support our claim with a number of sam-
ple constraints.

2. We identify a set of facilities based on constraint satis-
faction that can be provided by feature modeling and
feature-based configuration tools.

3. We describe a prototype supporting several of such
facilities based on Binary Decision Diagrams (BDDs)
and report on our experience with the prototype. Of
particular notice is the user interface of the prototype
configurator, which visually distinguishes between user
and machine configuration choices.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the necessary background information on cardi-
nality-based feature models, including some recent changes
to the notation. The special requirements of cardinality-
based feature modeling on expressing additional constraints
are discussed in Section 3. Section 4 give examples of addi-
tional constraints on cardinality-based feature models and
shows that they can be adequately expressed in OCL. Sec-
tion 5 classifies constraint satisfaction algorithms and fea-
ture modeling and feature-based configuration facilities based
on such algorithms. A prototype implementing some of
these facilities and our experience with the prototype are
described in Section 6. Related work is discussed Section 7,
and Section 8 closes with conclusions and direction for future
work.

2. BACKGROUND: CARDINALITY-BASED
FEATURE MODELING

Cardinality-based feature modeling integrates a number
of extensions to the original FODA notation. An example
of a cardinality-based feature model describing a family of
electronic shops is given in Figure 1. The notation is sum-
marized in Table 1. A brief explanation of the notation
follows.

A cardinality-based feature model is a hierarchy of fea-
tures, where each feature has a feature cardinality. A fea-
ture cardinality is an interval of the form [m..n], where
m ∈ Z ∧ n ∈ Z ∪ {∗} ∧ 0 ≤ m ∧ (m ≤ n ∨ n = ∗).
Feature cardinality denotes how many clones of the feature

(with its entire subtree) can be included as children of the
feature’s parent when specifying a concrete configuration.
Note that we allow a feature cardinality to have as an up-
per bound the Kleene star *. Such an upper bound denotes
the possibility to take a feature an unbounded number of
times. Features with the cardinality [1..1] are referred to as
mandatory, whereas features with the cardinality [0..1] are
called optional. For example, Payment is a mandatory fea-
ture, whereas Shipping is an optional feature. Features with
a cardinality having an upper bound larger than one can be
cloned during configuration. Features under a cloned fea-
ture can still be configured if they have variability. Cloning
is useful if a configuration needs to include multiple copies
of a part, where each part may be differently configured.
For example, the configuration of an electronic shop may
include multiple store fronts that may be configured differ-
ently, for example, by having different selections of payments
and shipping methods, if any.

Additionally, features can be arranged into feature groups,
where each feature group has a group cardinality. A group
cardinality is an interval of the form 〈m– n〉, where m, n ∈
Z∧0 ≤ m ≤ n ≤ k, where k is the number of features in the
group. Group cardinality denotes how many group members
can be selected. For example, at least and at most one of the
features CreditCard, DebitCard, and PurchaseOrder must
be selected as a subfeature of PaymentType.

A feature can have an attribute type, indicating that an
attribute value can be specified during configuration (un-
less the value is already present). We allow at most one
attribute per feature. If several attributes are needed, a
set of subfeatures, where each subfeature has an attribute,
can be introduced. The attribute type can be a basic type,
such as String or Integer, or FRef, which denotes the set of
all references to features in a given configuration. We also
refer to an attribute with the type FRef as a feature ref-
erence attribute. For example, our sample feature model in
Figure 1 uses string attributes to represent names of pay-
ment methods and shipping methods, and a float attribute
to represent the rate of a shipping method. Furthermore,
feature reference attributes are used in PaymentMethodRef

and ShippingMethodRef to point to predefined payment and
shipping methods in the back office, i.e., clones of Payment-
Method and ShippingMethod. Although a feature reference
can point to any feature in a configuration, we will later
show how to restrict the attributes to point to any of the
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Table 1: Symbols used in cardinality-based feature
modeling

Symbol Explanation

F

Solitary feature with cardinality [1..1], i.e.,
mandatory feature

F

Solitary feature with cardinality [0..1], i.e.,
optional feature

F

[0..m] Solitary feature with cardinality [0..m],
m > 1, i.e., optional clonable feature

F

[n..m]
Solitary feature with cardinality [n..m],
n > 0 ∧ m > 1, i.e., mandatory clonable

feature

F
Grouped feature with cardinality [0..1]

F
Grouped feature with cardinality [1..1]

F(value:T)
Feature F with attribute of type T and

value of value

F � Feature model reference F

Feature group with cardinality 〈1– 1〉, i.e.
xor-group

Feature group with cardinality 〈1– k〉, where
k is the group size, i.e. or-group

〈i– j〉
Feature group with cardinality 〈i– j〉

C1 �

B C2 �

A

D E

C ≡

D1 E1

C1

B

D2 E2

C2

A

Figure 2: Unfolding of feature model references

clones of PaymentMethod or ShippingMethod using an ad-
ditional constraint. Thus, feature reference attribute are
particularly useful in the context of cloning.

Finally, a node in a feature model can also be a feature
model reference. A feature model M with a reference to
another feature model is semantically equivalent to a copy of
M in which the reference has been unfolded, i.e., substituted
by the feature model to which the reference points. Feature
model references allow us to split large feature models into
smaller modules. Also, a feature model can contain several
references to the same sub-model, which is illustrated in
Figure 2. We use subscripts in order to distinguish among
the different feature copies created through unfolding. Our
sample feature model in Figure 1 has one feature model
reference, which is Catalog. For brevity, the feature model
that the reference points to is not shown.

The example in Figure 1 shows the full repertoire of cardina-
lity-based feature modeling. However, practical applications
may depend on a subset of the notation. In particular, fea-
ture models describing high-level characteristics of product
lines usually do not need feature cloning. Feature cloning
is often useful in defining configurations of runtime com-
ponents, policy profiles, and platform configurations. More

B C D

A

(a) Original cat-
book notation

B C D

〈0– 1〉
A

(b) New notation

Figure 3: A group of alternative features in the cat-
book and the new notation

extensive discussion on the applicability of cardinality-based
feature modeling is given elsewhere [13, Section 6].

It is interesting to note that, in contrast to our previous
work [12], we now also associate feature cardinalities with
grouped features [18]. However, the only possible values are
[0..0], [0..1], and [1..1]. Normally, a grouped feature has [0..1]
as its default cardinality. The cardinalities [1..1] and [0..0]
are used for features that were selected or eliminated, respec-
tively, from a group during specialization. Furthermore, we
use squares instead of circles for grouped feature cardinal-
ities in order to avoid confusion with the earlier notation
described in the “cat book” [11]. In the book, group cardi-
nalities and grouped feature cardinalities were interpreted in
sequence, but now, group cardinalities can be thought of as
additional constraints. Figure 3 illustrates this difference by
showing an example in the original cat-book notation and
its equivalent in the current notation.

3. CARDINALITY-BASED FEATURE MOD-
ELING WITH CONSTRAINTS

Not all kinds of constraints within a feature model can
be expressed using its tree structure and cardinalities. Such
constraints need to be captured as additional constraints.
Probably the best known examples of such constraints are
implies and excludes constraints. Also, the addition of at-
tributes prompts the need to define constraints over at-
tribute values. Finally, cloning requires the notion of a con-
text for scoping purposes and leads to constraints over sets
of features.

Let us first explain how cloning influences the set of facili-
ties necessary for expressing additional constraints. For that
purpose, consider the simple feature model in Figure 4(a).
The constraint stating that feature D implies feature E
could be simply expressed as

D implies E

Unfortunately, this constraint would not make much sense
for the feature model in Figure 4(b). This is because the
features B and C are now clonable, and a configuration con-
forming to this model may now contain multiple clones of
the features D and E (since a feature is cloned with its
entire subtree). An example of a constraint for the model
in Figure 4(b) would be “the non-emptiness of the set of
all D clones implies the non-emptiness of the set of all E
clones”. Furthermore, practical constraints (as we will see
later) may require collecting clones of a given feature not
in the entire feature model, but in the scope of a context
feature (i.e., clones that are direct or indirect subfeatures of
that feature).
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The notion of a context feature is illustrated in Figure 5.
The constraint that we would like to express for the feature
model in Figure 5(a) is that for every clone of B it is guar-
anteed that if the clone has C as a subfeature, it also has D
as a subfeature. In other words, the constraint is expressed
in the context of B:

context B:

C implies D

Figure 5(b) shows a configuration conforming to the feature
model in Figure 5(a) that also satisfies the above constraint.
Subscripts were applied to the names of clones in Figure 5(b)
in order to uniquely identify them.

Interestingly, additional constraints for cardinality-based
feature models can be adequately expressed using Object
Constraint Language (OCL) [20] or XPath [27]. Examples
of additional constraints expressed using XPath are given
elsewhere [2]. In this paper, we explore using OCL for this
purpose. An important advantage of OCL over XPath is
that modelers are more likely to be familiar with OCL than
XPath. Other advantages include the fact that OCL has
formally defined semantics [20, Appendix A] and that the
template interpretation of OCL described in a previous pa-
per [14] can be used to give formal semantics to OCL in the
context of cardinality-based feature modeling.

4. OCL AS A CONSTRAINT LANGUAGE
FOR CARDINALITY-BASED FEATURE
MODELS

OCL can be adopted for feature modeling by interpreting
feature models as class models with a containment hierarchy.

For example, Figure 6 shows a UML class model correspond-
ing to the feature model in Figure 1. The multiplicity at the
aggregate end of every composition in that model is assumed
to be 1. The multiplicities at the other ends are the same as
the corresponding cardinalities in the feature model. Fur-
thermore, FRef is an interface that every class representing
a feature realizes. The group cardinalities from the feature
model can be expressed as additional OCL constraints on
the class model. Semantically, the class model represents a
set of object structures which obey the multiplicities and the
additional OCL constraints. Each of these object structures
corresponds to a configuration of the feature model.1

Let us take a look at a number of sample additional con-
straints on the feature model in Figure 1 expressed in OCL.

The first example is a simple implies constraint that does
not involve any clonable features.

context Payment inv:
FraudDetection.isSelected() implies PaymentGateways.isSelected()

The constraint states that selecting FraudDetection im-
plies that PaymentGateways is also selected. The constraint
is stated as an OCL invariant in the context of Payment.
The occurrences of FraudDetection and PaymentGateways

denote navigation. According to an OCL convention, the
names of the classes being the targets of the navigation can
be used instead of role names if the latter are not available
(which is the case in Figure 6). Furthermore, we assume
that isSelected() is provided as a synonym for the stan-
dard OCL operation isDefined(). Please note that the
same constraint can also be expressed using EShop as the
context:

context EShop inv:
BackOffice.Payment.FraudDetection.isSelected() implies
BackOffice.Payment.PaymentGateways.isSelected()

As a second example, we would like to express that the
reference attribute of GatewayRef should refer only to a pay-
ment gateway, i.e., any of the subfeatures of
PaymentGateways:

context GatewayRef inv:
EShop.BackOffice.Payment.PaymentGateways.sub()

->includes(att)

The above constraint is stated in the context of GatewayRef,
meanig that the body of the constraint must hold for any in-
stance of GatewayRef. In our case, the body must hold only
if GatewayRef has been selected (i.e., an instance of it ex-
ists in the object structure). We assume that the operation
sub() returns all subfeatures of a feature (i.e., all objects

1At this point, the reader may wonder about the differences
between feature models and class models. There are at least
three main differences. Firstly, feature models can be seen as
a restricted form of class models. In particular, features do
not have operations, composition has always the multiplicity
of 1 at the aggregate end, and relationships such as inheri-
tance and associations are not available. Secondly, feature
modeling offers syntactic sugar. In particular, feature mod-
eling has convenience mechanisms such as feature groups,
which would have to be expressed as OCL constraints in a
class model, and a more concise concrete syntax. The tree
structure can also be exploited by tools to provide automatic
layout and outlining. Thirdly, feature modeling comes with
its own modeling philosophy. Feature models represent hier-
archies of properties, which is rather unusual for class mod-
eling.
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Figure 6: UML class model corresponding to the feature model in Figure 1

contained in the target of the operation). The right arrow
is used in OCL to invoke operations on collections. In our
case, we check whether the value of GatewayRef’s attribute
att is included in the subfeatures of PaymentGateways.

Similarly, we want to enforce that payment methods avail-
able in a given store front are a subset of the payment meth-
ods provided by the back office:

context PaymentMethodRef inv:
EShop.BackOffice.Payment.PaymentMethod->includes(att)

The above constraint assumes that the root feature EShop

can be used as a constant denoting the sole instance of
EShop, i.e., it is a syntactic sugar for EShop.allInstances().
Since the upper bound of the cardinality of PaymentMethod
is higher than one, the result of the navigation EShop.Back-

Office.Payment.PaymentMethod is a collection.
An analogous constraint is needed for shipping methods:

context ShippingMethodRef inv:
EShop.BackOffice.Shipping.ShippingMethod->includes(att)

The next constraint is an example of an implies constraint
within the context of a clonable feature (similar to the ex-
ample in Figure 5). It states that every payment method of
the type debit or credit card must have a specified gateway:

context PaymentMethod inv:
(PaymentType.CreditCard.isSelected() or
PaymentType.DebitCard.isSelected()) implies
GatewayRef.isSelected()

As an example of a constraint on the size of a set, let us
restrict the number of payment methods that are available
in a store front to 3:

context StoreFront inv:
SFPayment.PaymentMethodRef->size() <= 3

Finally, we give two examples of constraints involving nu-
meric attribute values. The first constraint states that a
shipping rate cannot be a negative number:

context Rate inv:
att>=0

The second constraint states that if an electronic shop has
shipping, at least one shipping method has a rate which is
a positive number (i.e., at least one shipping method is not
free):

context Shipping inv:
ShippingMethod.Rate.att->exists(x| x>0)

Now we are ready to look at how the group cardinalities
from the feature model can be expressed as additional OCL
constraints on the class model. For example, the or-group
under PaymentGateways can be represented by the following
constraint:

context PaymentGateways inv:
let

numOfSelectedFeatures =
CyberSource->union(Verisign->union(LinkPoint))->size()

in
numOfSelectedFeatures >= 1 and
numOfSelectedFeatures <= 3

5. TOOL SUPPORT FOR FEATURE MOD-
ELING WITH CONSTRAINTS

A feature model with additional constraints can be trans-
lated into a set of variables and set of constraints over these
variables. The variables represent the possible individual
choices, such as feature selections and attribute value as-
signments, and the set of constraints includes both the con-
straints implied by the feature hierarchy and the additional
constraints. A value assignment that satisfies the constraints
corresponds to a correct configuration. A value assignment
that assigns a value to every variable in the variable set cor-
responds to a full configuration. A partial assignment cor-
responds to a partial specialization [12], which is sometimes
also referred to as a partial configuration.

The area of Constraint Satisfaction offers numerous algo-
rithms that are of interest to feature modeling and feature-
based configuration tools. The main algorithm classes of
interest include:

• Constraint checking : Checking whether a particular
(complete or partial) variable assignment satisfies the
constraints.

• Constraint propagation: Infering the values of unde-
cided variables from the values of decided variables.

• Constraint satisfiability : Checking whether a set of
constraints has at least one solution.

• Constraint solving : Computing solutions for a set of
constraints.
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• Computing the number of solutions: Computing the
number of complete solutions for a set of constraints.

A feature modeling tool can offer facilities based on con-
straint satisfaction algorithms to help the developer create
correct feature models. Examples of such facilities are

• Model consistency checking : Constraint satisfiability
allows determining that the feature model has at least
one correct configuration.

• Detecting anomalies: Anomalies such as “dead fea-
tures”, i.e., features that are not part of any correct
configuration and thus cannot be selected [24], can also
be detected through constraint satisfiability. A feature
is dead if the conjunction of the variable correspond-
ing to the feature and the constraints implied by the
feature model is not satisfiable.

• Computing metrics: The number of correct configura-
tions is a useful metric indicating the degree of vari-
ability embodied in a feature model [15, 25]. It can
be computed by calculating the number of solutions
to the set of constraints implied by the feature model
(including the additional constraints). Another exam-
ple is degree of orthogonality, which is the ratio be-
tween the number of solutions to the set of constraints
implied by the feature model (including all additional
constraints) and the number of solutions to the set of
constraints implied by the feature hierarchy and addi-
tional constraints that are local (i.e., involve just one
feature). A high degree of orthogonality means that
decisions about feature selections can be done locally,
i.e., without worrying about their influence on choices
in other parts of the feature hierarchy.

Constraint satisfaction algorithms are particularly of in-
terest for feature-based configuration tools. Examples of
facilities based on constraint satisfaction in feature-based
configuration are

• Configuration checking : Checking that a complete con-
figuration satisfies a set of constraints is a relatively
simple and inexpensive operation amounting to expres-
sion evaluation. Checking a partial configuration is
more expensive: it means checking to see whether the
partial configuration is implied by the feature model,
i.e., it requires checking constraint satisfiability.

• Showing the number of remaining configurations: Com-
puting the number of configurations after every con-
figuration step gives the user a better idea about the
progress of the configuration process. If the number is
one, the user arrived at a complete configuration. If
the number is zero, the user has just created an incor-
rect configuration and will need to revise some of the
configuration steps.

• Propagating configuration choices: Selecting a particu-
lar feature may require selecting some other feature(s),
in which case the latter selection(s) can be inferred au-
tomatically from the first one using constraint propa-
gation. In general, a configuration choice that assigns
a particular value to a variable may restrict the do-
mains of available values for other variables.

• Auto-completion of configurations: Constraint solving
can be used for computing solutions (including com-
pleting partial solutions) that can be presented to the
user.

• Debugging incorrect configurations: In some cases, the
user may wish to quickly make several choices with-
out verifying the number of remaining configurations
along the way. This is particularly the case for an
expert user. The resulting configuration may not be
correct, in which case it needs to be fixed. While some
of the user choices will have to be revised, the user
may care about keeping some choices more than keep-
ing some other choices. Thus, we need efficient ways of
configuration fixing, which takes user preferences into
account.

Auto-completion and debugging are probably the most
challenging facilities to provide. Adequate solutions may
require weak constraints, heuristics, and custom solution
procedures.

6. TOOL PROTOTYPE
We have created a prototype extending fmp [2] with some

of the facilities based on constraint satisfaction discussed in
the previous section. fmp is an Eclipse plug-in for feature
modeling and feature-based configuration. In particular, we
have extended fmp with the following facilities.

• Computing the number of configurations represented by
a feature model : This facility allows the user to ver-
ify that a model has at least one configuration, and it
also gives the user an idea about the degree of vari-
ability embodied in the feature model. Figure 7 shows
a sample feature model with the number of concrete
configurations it represents.

• Propagating configuration choices: Figure 8 shows a
screen shot of the configuration interface, which ren-
ders the feature hierarchy with a check box for ev-
ery variable feature. The check box can have one of
five states: undecided, user-selected, machine-selected,
user-eliminated, and machine-eliminated. Undecided
is rendered as an empty check box and means that the
user has not decided whether this feature should be
selected or eliminated. The user can explicitly select
or eliminate a feature, which is rendered by a dark
check or cross, respectively. A user choice may trig-
ger machine choices by means of propagation. Fea-
tures selected or eliminated by the machine are ren-
dered as light checks or crosses, respectively. For ex-
ample, Figure 8 shows the result of the user selecting
feature FraudDetection in a configuration where all
check boxes were initially empty. Since FraudDetection
implies PaymentGateways, choice propagation has the
effect of placing a light check on PaymentGateways.
The user then decided to select CyberSource and elim-
inate LinkPoint, while leaving Verisign still unde-
cided. Using a different rendering for machine choices
allows the user to better understand the effect of choice
propagation.

• Computing the number of remaining configurations dur-
ing the configuration process: The number of remain-
ing configurations is the number of concrete configura-
tions represented by the current (potentially partial)

6



Figure 7: Sample feature model in fmp with con-
straint support

Figure 8: Sample configuration in fmp with con-
straint support

configuration. This number may give the user an idea
about the progress of the configuration process. For
example, the partial configuration in Figure 8 repre-
sents two concrete configurations, meaning that fur-
ther configuration choices are needed if the user wishes
to arrive at a single complete configuration. The num-
ber also informs the user when the partial or complete
configuration being constructed becomes incorrect, in
which case the number of remaining configurations be-
comes zero.

• Auto-completion of configurations: After making zero
or more choices, the user may request the tool to com-
plete the configuration such that the configuration con-
forms to the feature model with its additional con-
straints. The user may ask the tool to show up to
a user-specified number of correct solutions. The list
of alternative solutions can be inspected in a solution
browser and the desired solution can be selected.

The current prototype supports constraints only in the
form of propositional formulas over features, and it assumes
feature models without clonable features. The feature hier-
archy is translated into a propositional formula according to
the approach given by Batory [3].

The required constraint satisfaction machinery, namely
computing the number of solutions, constraint propagation,
and constraint solving, is based on Binary Decision Dia-
grams (BDD) [1]. The particular BDD package used in the
current prototype is from Configit Software [9].

The performance afforded by the underlying BDD algo-
rithms is excellent: the time required for counting solutions,
propagating choices, and computing solutions is hardly no-
ticeable by the user. We have tested our prototype with
models containing up to several hundred features. However,
since the number of features equals the number of variables
of the corresponding constraint satisfiability problem and
current BDD packages are known to handle problems with
tens of thousands of features efficiently, we do not expect
any scalability problems in terms of performance.

Although the visual distinction between user and machine
choices has shown to be useful, our initial experiments have
shown that better facilities for reviewing the effect of choice
propagation are needed. We are currently working on a user
interface that allows the user to browse through the effects
of propagating a user choice and to revoke the choice if de-
sired. Also, the auto-completion facility needs further devel-
opment. In particular, we want to allow the feature model
designer to define weak constraints which can compute ap-
propriate default completions based on the user choices at
a given point during the configuration process.

7. RELATED WORK
Related work for cardinality-based feature modeling can

be found in an earlier paper [13]. Here we only focus on ex-
pressing constraints for cardinality-based feature modeling
and constraint-based tool support for feature modeling and
feature-based configuration.

The use of XPath for expressing constraints for cardinality-
based feature modeling has been proposed in the context of
two feature modeling tools, namely XFeature [7] and an ear-
lier version of fmp [2]. In terms of constraint satisfaction,
both of these tools can check whether a concrete config-
uration is correct with respect to the XPath constraints,
which is done by simply invoking an XPath evaluator on an
XML representation of the configuration. However, more
sophisticated facilities such as choice propagation or auto-
completion are not supported by these tools. While the pa-
per by Cechticky et al. [7] gave one example of a constraint
involving clonable features, we are not aware of any previous
work analyzing the special needs of cardinality-based fea-
ture modeling in terms of expressing additional constraints
as given in Section 3. The use of OCL as a language for ex-
pressing additional constraints for feature models was previ-
ously explored in a Diploma thesis by Schilling [21] under the
supervision of the first author and by Streitferdt et al. [22].

An example of work on feature-based configuration sup-
porting constraint satisfaction facilities beyond simple con-
figuration checking is that of Batory [3]. Batory discusses
the use of SAT solvers for checking consistency of a feature
model and the use of constraint propagation algorithms to
propagate configuration choices. Benavides et al. present
similar ideas [5]. Certain versions of the feature model-
ing and configuration tool pure::variants [6] also support
choice propagation. Similar to our prototype described in
Section 6, the constraint satisfaction facilities in the above
works do not consider clonable features.

Von der Maßen and Lichter [25] proposed a way to calcu-
late a rough approximation of the number of correct com-
plete configurations. We use SAT count, an existing BDD-
based algorithm [1], which can compute the exact number of
such configurations for large feature models within a fraction
of a second. Also, we are not aware of any other feature-
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based configuration tools showing the number of remaining
configurations.

The use of a BDD package as constraint satisfaction en-
gine for feature modeling and configuration is not new. An
example of such approach is that by van der Storm [23]. A
related approach using BDDs, although not directly based
on feature modeling, is DESERT [19].

A large body of work dealing with constraint-based con-
figuration exists in the area of Artificial Intelligence. We
already discussed the related approaches from that are in a
previous paper [13, Section 6]. Although these approaches
are usually concerned with the configuration of physical prod-
ucts, many ideas can certainly be transported into the realm
of software product lines. We expect more of such cross-
disciplinary efforts in the future.

We are not aware of any other classification of constraint-
satisfaction-based facilities for feature modeling comparable
to the one given in Section 5.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed the needs of cardinality-based

feature modeling with respect to expressing additional con-
straints and demonstrated how these needs are satisfied by
OCL. Furthermore, we classified the facilities that a fea-
ture modeling tool and a feature-based configurator can of-
fer based on constraint satisfaction algorithms. Finally, we
described a prototype implementation of some of these fa-
cilities and shared our experience with the prototype.

For future work, we plan to extend the constraint satis-
faction facilities in our tool prototype to handle OCL con-
straints over the full cardinality-based feature modeling no-
tation. This will be done by adapting our OCL template
interpretation [14] for the purpose of feature modeling. Fur-
thermore, we plan to improve the user interaction model
and the user interface for feature-based configuration in or-
der to allow the user to deal with large feature models more
effectively.
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