
Business Process Platforms and Software Factories
An Idea Paper

David S. Frankel

SAP Labs, LLC
3421 Hillview Avenue
Palo Alto, CA 94304

+1 530 893-1100

david.frankel@sap.com

ABSTRACT
This idea paper discusses the role that business process platforms
can play in a Software Factories approach to software
development. A business process platform is a new kind of
platform that sits on top of technical software platforms and
facilitates the creation of business process oriented software
factories that we call business process factories.

The paper starts by providing some basic background on how
Software Factories integrates the concepts of domain-specific
modeling languages and software product lines. It also describes
the basic nature of a business process platform. Then it discusses
how the reusable assets in a business process platform can form
the basis for product lines within an overall Software Factories
approach.

Categories and Subject Descriptors
D.2.11 [Software Architectures, Domain-Specific Architectures]
J.1 [Administrative Data Processing, Business]

General Terms
Design, Management, Standardization, Economics

Keywords
“Business process” “business process platform” “software
factories” “software factory” “product line” “metadata” “level of
abstraction” “abstraction level” “software factory” “business
process factory”

1. INTRODUCTION
One of the most important contributions of Software Factories is
the integration of the concept of domain-specific modeling
languages with the Carnegie-Mellon Software Engineering
Institute (SEI) concept of software product lines.[1] The
emergence of business process platforms adds a potentially
powerful dimension to this integrated approach, pointing the way
to a special kind of software factory called a business process
factory.

For background, it is useful to review the basic concepts of
product line practices, the software factories approach to product
lines, and the evolution of software platforms. Sections 2 through
5 provide background on these topics that is necessary to
comprehend the discussion of business process platforms and
business process factories in sections 6 and 7.

2. SOFTWARE PRODUCT LINES
The SEI defines a software product line (SPL) as “a set of
software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of
core assets in a prescribed way.” [2]

The SPL approach (see Figure 1)1 divides the software
development process into two distinct but related processes—core
asset development and product development. Core asset
development produces a framework of reusable assets for the
product line, and defines an architecture for the framework.
Product development uses the framework to produce individual
products. A production plan provides instructions on how to use
the framework in accordance with the architecture in order to
produce products.

1 The “Sims Water Line,” depicted in Figure 2, and invented by

Oliver Sims, uses the analogy of a water line to describe the
separation of concerns between aspects of a system that surface
to the application developer’s viewpoint, as opposed to aspects
that the infrastructure handles below the surface.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.

Business Process Platforms and Software Factories David S. Frankel, SAP Labs Page #

Reusable assets for the product line
Created via core asset development

Individual systems produced via product development

Individual
Product 1

Individual
Product n

Individual
Product 2 …

Production
PlanThe Sims “Water Line”

Architecture Components

Figure 1: Software Product Lines
SPL addresses one of the main problems that has bedeviled
component-based development—the problem of scope.
Thoughtfully constraining the scope to which frameworks of
components apply makes the problem of making the components
truly reusable more tractable.

An example of an SPL is a set of products that manages risk for
portfolios of tradable financial derivatives. Another example of
an SPL is a set of role-access security products.

3. DOMAIN-SPECIFIC LANGUAGES
(DSLs) AND PRODUCT LINES
The field of Generative Programming highlighted the notion that
the core assets for a product line could include specialized
specification languages.2 It posited that a well-developed
understanding of the variability among the members of a
carefully-scoped product line makes it possible in many cases to
define a language, at a high level of abstraction, that product
developers can use to specify individual products. Special
compilers process the high-level specifications and generate code
that reuses the product line’s core assets (see Figure 2).

2 Generative Programming contributes much more than this

narrow summary describes. See [3].

Reusable assets for the product line
Created via core asset development

Individual systems produced via product development

Individual
Product 1

Individual
Product n

Individual
Product 2 …

Production
PlanThe Sims “Water Line”

Architecture Components
Domain-Specific

Language(s)

Specialized
Compiler(s)

Figure 2: DSLs and Product Lines

4. DOMAIN-SPECIFIC MODELING
LANGUAGES
The Software Factories approach takes Generative Programming
one step further, by integrating the role of metadata management
and modeling languages tools into the picture.3
Specification languages—even if at a high level of abstraction—
require mechanisms that store, parse, serialize, and version the
metadata that specifications capture. The architects of the
Software Factories approach recognized that the use of multiple
domain-specific languages scales better when common
technology and tools are available for managing metadata. Such
infrastructures obviate the need to program metadata management
from scratch for each language, and make it easier to integrate
metadata originating from different languages.
The architects also saw that generic tools that support domain-
specific modeling languages, such as Model Integrated
Computing4, provide just such a common infrastructure, and also
leverage the power of modeling notations when constructing
DSLs for product lines. Thus, domain-specific modeling
languages (DSMLs) are an important aspect of Software
Factories.

5. TECHNICAL SOFTWARE PLATFORMS
Technical software platforms are an important factor in the
emergence of modeling languages and model-driven tools that
operate at ever higher levels of abstraction.

5.1 The Rising Platform Abstraction Level
The abstraction level of technical software platforms has risen
steadily over the years (see Figure 3). Operating systems were
the original technical software platform. Over time, network

3 Software Factories of course integrates much more. We focus

here only on one aspect its synergistic integration of a number
of concepts.

4 The Generic Modeling Environment (GME) is the key tool that
the Model-Integrated Computing project has produced. See [5].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Business Process Platforms and Software Factories David S. Frankel, SAP Labs Page #

systems (such as TCP/IP), database management systems, and
two-phase commit transaction monitors raised the abstraction
level further.
Modern middleware has boosted the platform abstraction level
another order of magnitude, distributed object technology such as
and COM+ and CORBA; message-oriented middleware; and
application servers based on .NET and J2EE that manage
transaction processing, persistence, security, component-based
development, data integration, and service-oriented architecture.

5.2 Enabling Model-Driven Tools
The rise of the platform abstraction level makes it easier for
model compilers to generate code from relatively abstract models,
because it shrinks the abstraction gap the compiler has to bridge.
Suppose that we have a DSML for specifying individual products
within our example line of products that manage risk for
portfolios of tradable financial derivatives. Now imagine that a
model compiler that processes specifications expressed in our
DSML had to generate assembly language, and could not even
make use of the services of an operating system. Writing such a
model compiler would be a Herculean task.
Now imagine that our model compiler can generate 3GL code,
such as C# or Java, but only “raw” code that does not leverage
middleware. That would be easier than generating assembly
language with no operating system calls, but it still would be a
formidable challenge.
Finally, assume that we can generate 3GL code that makes full
use of middleware. Writing such a compiler is not easy, but the
availability of middleware makes it more straightforward. That is
why the rise of the abstraction level of the technical software
platform is a critical enabler of the move to domain-specific
modeling languages that operate at a high level of abstraction.

6. BUSINESS PROCESS PLATFORMS
A business process platform (BPP) is a new kind of platform that
sits above the traditional technical software platform (Figure 3). It
contains frameworks of executable service and business process
components. Users of the platform compose specialized
applications that support custom services, business processes, and
analytics.
To understand the notion of a framework of services and
processes better, think of the relationship between an application
such as Excel, and the dozens of reusable COM components that
Excel contains that make it possible to write clients that drive
Excel in customized ways. The components are not random
collections of functionality; rather, their respective behaviors are
coordinated, each providing behavior needed to construct and
drive a spreadsheet.
Similarly, a BPP can contain, for example, a framework of
executable services and processes for managing accounts
receivable. An accounts receivable framework’s services provide
related functionality for processing invoices, rolling over accounts
at end of month, managing discount policies, printing statements,
reporting the impact of receivables on cash position, and so on.
Some services are more comprehensive than others, with the most
comprehensive executing more complete business processes.
A BPP pushes the abstraction level of platforms to new heights.
In doing so, it is a key enabler of modeling tools at high levels of

abstraction that ease application composition on top of the
platform. Spurring the production of composite applications is
the raison de etre of BPPs.

6.1 Composite Applications: A Business
Example
A company had a set of systems covering procure-to-pay, order-
to-cash, and manufacture-to-inventory processes. The company
found a way to reuse them to become more competitive.
At the start of each week the company asked its suppliers which
components they were selling at low prices. The company then
ran its advanced planner and optimizer system to determine what
it could make with those low-cost components. Once the company
knew what products it could make, it ran an electronic auction for
those products to maximize the selling price. When the auction
resulted in an order, the company bought the components it
needed (at low cost) from its suppliers and ran its manufacturing
system to plan production for and build the finished products.
As a result, the company significantly increased its profit by
minimizing component costs and maximizing the selling price,
just by reusing existing systems reconfigured into a new business
process. Figure 4 illustrates this innovative integration of existing
functions and applications.
This is a classic example of a composite application. We can
build such applications from existing functionality without BPPs,
but BPPs package the functionality so that it is more readily
reusable. BPPs are thus designed to ease the composition of such
specialized applications and business processes. The combination
of a BPP with model-driven composition tools can make a real
difference when a company wishes to customize its operations,
such as in the manner described in this example

Business Process Platform

Executable Services & Processes

Operating System

Middleware

Technical Software Platform

Composite Applications

Level of
AbstractionTransaction System

DBMS Network
System

Figure 3: Platform Abstraction Levels

Business Process Platforms and Software Factories David S. Frankel, SAP Labs Page #

6.2 Business Process Platforms and Software
Factories
Up to now, much of the discussion in the industry about the use of
modeling languages and tools for composing applications on top
of BPPs assumes that such tools are general-purpose, not specific
to any particular business domain or sub-domain. Their avowed
purpose is to make it easier to construct specialized business
applications covering supply-chain management, enterprise
resource planning, customer relationship management, and so on.
These general-purpose modeling tools have a potentially more
powerful use than being a means for application construction.
They can be also be a means for constructing software factories.

Product-Price
Optimizer
(Analytics)

Seller’s
Auction

Manufacturing
Planning & Production

= Data Flow

Supply Chain
Price Look Up

Parts
Inventory

Product
Descriptions

Figure 4: Business Integration Example

The company in our example was focused on one custom solution
to a specific challenge. However, another way of using the
general-purpose composition tools would be to build a software
factory for a domain of products that optimize profit and
production in the same fashion. The core assets would include a
framework of related service and process components that
specifically integrate the following functionality:

• Determining products to build based on part prices,
inventory, and descriptions of products that the
company can produce

• Conducting electronic auctions

• Manufacturing—planning and production
A modeling language specific to this domain would make it
possible to customize individual products more efficiently than
constructing each such product with the general-purpose
composition tools.

An ISV might see an opportunity to offer such a software factory
that has the potential for resale in a number of different lines of
business; or, our original company might have many lines of
business that have similar enough requirements such that the
investment in this particular kind of software factory for internal
use would be worthwhile.

6.3 Integrating General-Purpose BPP
Composition Tools with DSMLs
In our business example the general-purpose model-driven tool
for composing solutions on top of the BPP still has a valuable role
to play, despite the fact that the software factory provides a
DSML. The general-purpose tool provides a way to create the
software factory’s reusable assets more efficiently than would be
possible without such a tool.
The architects of the software factory would have to weigh the
tradeoffs between two basic ways of using the general-purpose
modeling tool.

6.3.1 A Framework of Pre-Compiled Components
One way would be to use the general-purpose tool’s model
compiler to generate components for the factory’s reusable asset
base. The reusable framework would thus consist of specialized,
executable service and process components. The model compiler
for the DSML, when processing a specification for a specific
member of the product line, would generate code that uses those
compiled components.

6.3.2 A Framework of Model Components
The alternate approach would be for the DSML’s model compiler
to generate general-purpose models that it hands off to the
general-purpose modeling tool’s model compiler. In this case, the
reusable framework’s components would be parts of models
defined in terms of the general-purpose modeling language—in
other words, they would be model components. The DMSL
model compiler would use these model components to assemble
the model for a specific product, before handing the assembled
model off to the general-purpose model compiler.

7. BUSINESS PROCESS FACTORIES
The term business process factory refers to the special kind of
software factory described above, which is built on top of a BPP.
The advent of BPPs, and the general-purpose modeling tools that
go with them, enable this kind of software factory and continue
the push up the abstraction ladder (Figure 5).

Business Process Platform

Executable Services & Processes

Level of
Abstraction

Composite
Applications

Business Process
Factories

Individual
Products

Figure 5: Business Process Factory: A Special Kind of
Software Factory

Business Process Platforms and Software Factories David S. Frankel, SAP Labs Page #

Business process factories can play an important role in fostering
the ability of a business to adapt to changing conditions. Within
the broad scope of a general-purpose BPP and associated
modeling tools lie myriad opportunities for ISVs and IT
organizations to develop software factories that help enact
business processes with relatively narrow focus on specific,
innovative value propositions.

7.1 Business Process Factories and Value
Chains
In today’s value chain oriented business, companies need to erect
and reconfigure B2B value chains rapidly. Since BPPs build on
top of technical platforms that provide infrastructure for service-
oriented architecture (SOA), a business process factory can also
play a role in reconfiguring value chains.
A value chain factory is a special kind of business process factory
that promotes a product line of value chains that share a common
focus on a particular line of business or kind of B2B transaction.

7.2 Business Process Factories and Moore’s
Fault Line
Geoffrey Moore, the originator of the “crossing the chasm”
concept, uses the notion of a fault line to describe the distinction
between business functions that are “core” for a business as
opposed to those that are “context.”[4] Core functions
competitively differentiate a company’s offerings. Context is
everything else that the business must do in order to succeed but
that provide no differentiation.
Moore posits that one key to the long term health of a company is
the ability to redeploy or reconfigure context resources such that
the resources can contribute to core. This is one of the key value
propositions of a BPP. By encapsulating context services and
processes in frameworks of reusable components, the BPP makes
it possible to reuse and redeploy services and processes in new,
innovative ways that contribute to core.
A business process factory approach enhances this basic BPP
value proposition because, rather than thinking in terms of
constructing one-off special solutions on top of the platform, it

orients to constructing new, specialized frameworks that support
families of solutions that contribute to core.

8. SUMMARY
A business process platform is a new kind of platform built on top
of a technical software platform. The primary value proposition
of a business process platform is that it helps businesses redeploy
resources “from context to core” in the parlance of the Moore
fault line.
A business process factory is a software factory built on top of—
and, therefore, at a higher level of abstraction than—a business
process platform. Business process factories enhance the value of
a business process platform, by raising the level of abstraction
even further and thereby increasing the power that companies can
bring to bear in their efforts to redeploy resources from context to
core.

9. ACKNOWLEDGMENTS
Thanks to David Burdett, of SAP Labs Palo Alto, for the business
example in section 6.1.

10. REFERENCES
[1] Greenfield, J., and Short, K., with Cook, S. and Kent, S.,

Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools, John Wiley & Sons, 2004

[2] Carnegie-Mellon Software Engineering Institute, Software
Product Lines,
http://www.sei.cmu.edu/productlines/index.html

[3] Czarnecki, K. and Eisenecker, U.W., Generative
Programming: Methods, Tools, and Applications, Addison
Wesley, 2000

[4] Moore, G., Living on the Fault Line: Managing for
Shareholder Value in Any Economy, Harper Collins, 2000.

[5] Vanderbilt Institute for Software Integrated Systems,
Generic Modeling Environment,
http://www.isis.vanderbilt.edu/Projects/gme/

