
Enterprise business application product line as a model
driven software factory

Vinay Kulkarni
Tata Research Development and

Design Centre, Pune, INDIA
+91 20 56086301

vinay.vkulkarni@tcs.com

 Sreedhar Reddy
Tata Research Development and

Design Centre, Pune, INDIA
+91 20 56086302

sreedhar.reddy@tcs.com

ABSTRACT
Enterprise business applications are critical to the smooth
operation of modern businesses. They need to perform and scale
up to the ever-increasing demands of modern businesses on IT,
and are implemented using distributed architectures. These
applications tend to have a long life during which they need to
quickly respond to changing business rules, business processes
and technology platforms. No two businesses are exactly alike
even in the same business domain. This calls for an enterprise
business application to be specialized for the needs of a specific
business. Product line architectures that organize systems into
well-defined core and variable parts have been proposed to
address this need. Traditional code based development approaches
do not provide the right kind of abstractions to support product
lines. We propose a model driven development approach that
enables a system to be specified in terms of composable units
along the required dimensions of variations of a product line.
Such a platform-independent specification can be retargeted to
technology platforms of choice using model-based code
generators. We propose a software factory for an enterprise
business application product line wherein a set of purpose-specific
tools generated from their specifications support a purpose-
specific development process. We describe our experience in
building and using such a software factory.

Categories and Subject Descriptors
D.2 [Software Engineering]: D 2.9 Management, D 2.10 Design
and D 2.13 Reusable software.

General Terms
Management, Design, Languages.

Keywords
Software factories, product lines, model driven development,
separation of concerns, aspect oriented programming

1. INTRODUCTION
Modern businesses rely on enterprise business applications for
their existence and smooth operation. During their lifetime,
enterprise business applications need to quickly respond to
changes in business rules, business processes and technology
platforms. To have a better handle on scale-up and performance
issues, modern enterprise applications are typically implemented
as distributed systems. Faced with the task of developing large
and complex applications, industrial practice uses a combination
of non-formal notations and methods for implementation.
Different notations are used to specify the properties of different
aspects of an application and these specifications are transformed
into their corresponding implementations through the steps of a
development process. The development process relies heavily on
manual verification to ensure the different pieces integrate into a
consistent whole. This is an expensive and error-prone process
demanding large teams with broad-ranging expertise in business
domain, architecture and technology platforms such as
presentation managers, programming languages, databases,
middleware etc.

Model-driven development approach addresses this problem by
providing a set of modeling notations for specifying different
layers of a system namely user interface, application functionality
and database in a platform independent manner [8]. A set of code
generators then transforms these models into platform-specific
implementations. Models, being at a higher level of abstraction,
are easier to understand and verify for properties of interest.
Model based code generation incorporating proven design and
architectural patterns results in significant gains in productivity
and uniformly high quality. This approach can be used to retarget
product lines to multiple technology platforms.

No two businesses are exactly alike even in the same business
domain. This calls for an enterprise business application to be
specialized for the needs of a specific business. Product line
architectures that organize systems into well-defined core and
variable parts have been proposed to address this need the central
idea being products within a product-line are differentiated by
features [5, 2]. Producing a specific product variant can be seen as
a stepwise refinement process wherein a common abstract model
is refined to inject product-specific factors [1]. Feature
commonalities can be captured as reusable patterns from which
specific variants can be instantiated through suitable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

parameterization. A tool driven software factory can provide the
necessary machinery to assemble the instantiated patterns [3].
Multi-dimensional separation of concerns approach addresses this
need through decomposition of a system along multiple
dimensions of interest [11]. Aspect oriented programming
provides support for this approach only at programming language
level where the same base language is used for specifying the
different aspects of the system [6]. However, one would like to
use purpose-specific languages to specify various aspects
wherever possible. The richer abstractions provided by such
higher level domain specific languages lead to ease of
understanding and analysis, and a possibility of code generation.

We propose a model driven development approach that enables a
system to be specified in terms of composable units along the
required dimensions of variations of a product line. Such a
platform-independent specification is retargeted to technology
platforms of choice using model-based code generators.
Typically, enterprise business applications tend to vary along five
dimensions namely, functionality (F), business process (P),
architecture (A), design strategies (D) and technology platform
(T). A model based code generator encodes specific choices along
A, D and T dimensions. We propose a software factory for an
enterprise business application product line wherein a set of
product line variant specific model based code generators are
generated from their specifications. We describe our experience in
building and using such a software factory.

2. Solution approach
Figure 1 shows the proposed model driven software factory for
enterprise business application product lines.

A product line is organized as a repository of composable
building blocks structured along the different dimensions of
variation. A specific product line variant is derived as a
composition of such building blocks of interest along these
dimensions. The derivation process begins by matching the
requirements of the desired variant against the repository to select
closest matching building blocks. A gap analysis then identifies
the necessary modifications and adaptations to the candidate
building blocks, if any. It may also lead to development of new
building blocks. A purpose-specific code generator is then
generated from these modified building blocks along A, D and T
dimensions. The functionality and process building blocks are
then composed to yield an integrated specification. The purpose-
specific code generator translates this specification into a
technology platform specific implementation incorporating the
selected design and architectural patterns.

Metamodel

1
Model element Constraint

In our approach, an application is specified as a hierarchical
composition of building blocks of interest along the dimensions of
variation. A building block encapsulates reusable functionality
along a dimension of variation. A building block can be seen as a
specification of an aspect expressed in terms of a language
specified by an associated meta model. Figure 2 shows the meta
model of building block itself. On instantiation, a building block
brings along a set of model elements that conforms to the meta
model and associated constraints. Building blocks are of two
kinds: leaf building block and composite building block. The
instantiation specification of a leaf building block specifies how
to stamp out aspect-specific model elements. The transformation
specification specifies how the model is transformed into code.
The instantiation specification of a composite building block
specifies how model elements constructed in member building
blocks are merged (woven) together. We have found merge by
name scheme of model merging sufficient for our purposes.
Weaving specification of a composite building block specifies
how the code generated by its member building blocks is woven

Fig. 1. A model driven software factory

Ready-to-deploy application
components

Repository of building blocks

Generic code
generator generator

Composition

d a t

d’ a’ t’

Selection

Modification

Purpose specific code generator

f p

f’ p’

D A T F P

Fig. 2. Building block meta model

tinstantiationSpec ransformationSpec

Building block
parameter

1

2..*

1

composedOf

*

*

Composite building block Leaf building block

consistency
metamodel 1

1
*

member

1 1 1 1
weavingSpec

0..1 0..1 0..1 0..1 0..1
Weaving spec Instantiation spec Transformation

spec

together. We have found a code weaving specification language
along the linesof Hyper/J [4] sufficient for our purposes. We have
used a model-to-text transformation language called SpecL for
model transformations [10].

The process of aspect composition is realized through a post-order
traversal of the building block hierarchy in three sequential steps
namely Instantiation, Transformation and Weaving. The
instantiation step stamps out models and merges them. The
transformation step transforms models into code and generates
weaving specifications for composing the generated code. The
weaving step composes the generated code fragments by
processing the weaving specifications.

3. Discussion
During the past 10 years we have developed several business-
critical enterprise solutions for a variety of business verticals like
banking, financial services and insurance [7]. We are in the
process of organizing these purpose-specific enterprise solutions
in the form of vertical-specific product lines. The proposed
approach provides technology and process related infrastructure
to support such product lines as a software factory. We are in the
process of defining the required domain specific languages to
specify building blocks along the required dimensions for each
product line.

The process of deriving a specific product variant begins by
identifying the business process flows of interest. This leads to
identification of functions required to implement these flows. A
keyword based search identifies functionality and process
building blocks available in the repository. A manual comparison
of the desired business process flows and business functions with
existing process flows and their implementations identifies the
functionality gap. Non-functional requirements like performance,
throughput, architecture and technology platform are the basis for
identifying D, A and T building blocks. A simple keyword based
search mechanism is provided for selecting suitable D, A and T
building blocks. These building blocks are composed to quickly
realize implementation of model based code generators that
impart the desired non-functional characteristics to the business
functionality under consideration. If found unsuitable, one goes
back to select a different set of D, A and T building blocks from
the repository or modifies the existing ones suitably.

We have realized the factory vision shown in figure 1 only in
parts by being able to address the D, A and T dimensions of
variation by aspect-oriented restructuring of our MDD toolset
facilitating easy customization of the code generators. We
decomposed the code generators into well-defined self-contained
building blocks such as model to java, object-relational map,
auditing, concurrency management, error handling, message
handling strategies like synchronous, asynchronous, queue-based
etc.

Our MDD toolset [9] translates a model (Mu) that is an instance of
a unified meta model (MMu) to various software artefacts like

Java code, JDBC code, JSP code and a variety of configuration
specifications in XML as shown in figure 3. Limiting aspect
weaving only to code level artefacts would necessitate specialized
weavers for Java, JDBC, JSP, XML etc. each having separate join
point models. Also, this approach would necessitate some
commonality over these join point models so as to have an
integrated Java application. With increased number of software
artefacts to be produced the approach becomes increasingly
complex as essentially it amounts to building aspect infrastructure
for each such artefact. We address this problem by specifying
aspect weaving at the unified meta model level and performing it
at the model level whenever possible. Unified meta model enables
specification of relationships between the various (sub) modeling
languages. A reflexive meta modeling framework provides the
necessary infrastructure to define and integrate the various
modeling languages of interest and a meta model aware model
transformation framework provides the necessary technology to
address model weaving requirements. Performing aspect weaving
at the model level also, whenever possible, results in reuse of
model based code generators such as model-to-Java, model-to-
JDBC, model-to-JSP and model-to-XML as these code generators
are specified at the unified meta model level.

Model
(Mu)

Meta Model
(MMu)

Instance of

Model-based code generation

JSP
code

XML
specs

JDBC
code

Java
code

Fig. 3. Model driven development

We envisage several issues in decomposing a product line in
terms of building blocks along F and P dimensions.

It is not clear which facets of a system deserve to be treated as
aspects. There is a need to identify which of these aspects need to
be separately specified. For instance, it is not clear how to cleanly
separate the performance aspect from functionality. There is a
need to investigate how these aspects can be modeled and what
the right kind of abstractions for modeling them are to satisfy the
various ‘ities’ like maintainability, reusability etc. For instance,
how does one model a design for better maintainability?

Aspects may overlap each other. This may introduce a
dependency on the order of their weaving. In such cases, how
does one ensure that properties of all aspects hold after their
weaving? An aspect specification may exist partly in model form
and partly in code form. What’s the right approach to integrate

such aspects into the aspect modeling framework? A system is
organized as a set of independently specified aspects. The
knowledge of weaving an aspect is hidden inside the
transformation. This gives rise to the issue of traceability from an
aspect to the final implementation. It is not clear how to compute
the impact of a change in an aspect on the final implementation of
the system. This information would be critical for ‘what if
analysis’, estimating testing efforts, managing releases etc.

Supporting separation of concerns for product lines using MDD
raises several tooling issues. The modeling tool should be
extensible to support new modeling languages. This is required to
define new aspect models and relate them to the existing
component models through model transformation mechanism.
The model transformation tool should have adequate support for
pattern matching and composition. It should provide support for
incremental reconciliation of models. The performance of the tool
should scale up to cater to the demands of enterprise class
applications.

There should be tool support for intelligent debugging at aspect
model level. This is significant because aspects are specified
independent of each other and are woven together into the final
implementation code. A bug detected at code level should be
traceable back to the aspect specification.

There should be support, preferably tool-aided, for aspect-based
testing. Since aspects are independently specified, it should be
possible to specify test cases for an aspect independently and
compose the test cases to arrive at the system level test cases.

4. Summary
In this paper, we presented an approach to support enterprise
business application product lines as a software factory using
model driven development techniques. We described a partial
realization of this vision using multi-dimensional separation of
concerns. We discussed several issues that need to be investigated
to fully realize this vision. We also discussed some tooling issues.

Despite the many problems yet to be solved, we found that
aspect-oriented restructuring of our MDD toolset has facilitated
easy customization of the code generators and has resulted in
increased reuse across their variants. Our MDD toolset has been
used to develop several large enterprise class business
applications for the past several years. These applications can be
viewed as a set of vertical-specific product lines having toolset
requirements that are similar but not exactly the same. Earlier,
such a customization request meant opening up the
implementation of the impacted tools that required expertise of all
the tools to ensure the relevant changes are implemented in a
consistent manner. Aspect-oriented restructuring has enabled us to
organize the development team along two independent streams
namely technology platform experts and design experts. A single

design team can now service all the technology platform teams.
Separation of design strategies has enabled leaner technology
platform teams. Moreover, it has enabled our toolset itself to be
organized as a product family wherein a tool variant can
composed from design strategy and technology platform aspects
of choice. Containment of change impact due to localization and
increased reuse due to composability have led to quick turn
around time for delivering a tool variant. Use of a higher-level
model-aware transformation language has made maintenance and
evolution of the product line easy.

We are working on addressing some of the open issues described
earlier such as defining a process for identification, definition and
extension of building blocks, and an infrastructure for defining,
composing and processing domain specific languages of interest.

5. REFERENCES
[1] Don Batory, Jacob Neal Sarvela and Axel Rauschmayer,

Scaling step-wise refinement, IEEE TSE, 2004
[2] K Czarnecki and U Eisenecker, Generative programming

methods, tools and applications, Addison-Wesley, 2000.
[3] Jack Greenfield and Keith Short, Software factories:

Assembling applications with patterns, models, frameworks
and tools, Wiley, 2004.

[4] IBM research. Hyper/J: Multi-dimensional separation of
concerns for Java.
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.ht
m

[5] K Kang, S Kohen, J Hess, W Novak and A Peterson,
Feature-orientation domain analysis feasibility study,
Technical Report, CMU/SEI-90TR-21, November 1990.

[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Longtier and John
Irwin. Aspect oriented programming. ECOOP’97 LNCS
1241, pp 220-242. Springer-Verlag. June 1997.

[7] Vinay Kulkarni, Sreedhar Reddy: Model-Driven
Development of Enterprise Applications. UML Satellite
Activities 2004: 118-128

[8] Vinay Kulkarni, R. Venkatesh and Sreedhar Reddy.
Generating enterprise applications from models. OOIS’02,
LNCS 2426, pp 270-279. 2002.

[9] MasterCraft – Component-based Development Environment.
Technical Documents. Tata Research Development and
Design Centre. http://www.tata-mastercraft.com

[10] MOF Models to Text Transformation RFP
http://www.omg.org/cgi-bin/doc?ad/05-05-15

[11] Peri Tarr, Harold Ossher, William Harrison and Stanley M.
Suttom Jr. N Degrees of separation: Multi-dimensional
separation of concerns. Proceedings of the International
Conference on Software Engineering (ICSE'99) pp 107-119.

http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Reddy:Sreedhar.html
http://www.informatik.uni-trier.de/~ley/db/conf/uml/ml2004.html
http://www.informatik.uni-trier.de/~ley/db/conf/uml/ml2004.html

	INTRODUCTION
	Solution approach
	Discussion
	Summary
	REFERENCES

