
Improving MDD Productivity with Software Factories
Benoît Langlois

Thales Research & Technology
RD 128

91767 Palaiseau, France
33(1) 69.41.60.28

benoit.langlois@thalesgroup.com

Jean Barata
Thales Research & Technology

RD 128
91767 Palaiseau, France

33(1) 69.41.60.32
jean.barata@thalesgroup.com

Daniel Exertier
Thales Research & Technology

RD 128
91767 Palaiseau, France

33(1) 69.41.60.42
daniel.exertier@thalesgroup.com

ABSTRACT
Productivity improvement is a main issue in the context of large-
scale developments, where produced software needs to meet
quality criteria, both on budget and schedule. This paper studies
the introduction of the software factories technique to automate
and improve production of complex software systems in the
context of Model-Driven Development (MDD), which is still
evolving (standards, technologies and tools). To validate this
technique, a case study presents a progressive paradigm shift from
a traditional model-driven development toward software factories
usage. The result is the definition of a technical foundation
improving productivity that can be enriched by techniques and
practices enabling intensive production of software systems with
software factories.

Keywords
MDD, SOFTWARE FACTORIES, DSL, PRODUCT-LINE.

1. INTRODUCTION
To produce high quality software both on budget and schedule,
companies usually face productivity improvement issue. This is
particularly true in the context of large-scale systems. This paper
focuses on the introduction of the software factories technique to
improve productivity in the MDD context, and on the paradigm
shift from a manually written set of modeling tools to an intensive
production of modeling tools with software factories. To
appreciate this progression, this paper presents a case study of
modeling assistance HMIs (Human-Machine Interaction)
production with four successive development strategies: manual
development, manual development with framework, automated
development with software factories, and automated development
with software factories and DSL (Domain-Specific Language).
The comparison between production times reveals the most
productive and profitable strategy. But beyond software factories
adoption, the stake is to determine a set of techniques and
practices to continue to substantially improve the productivity of
complex software systems developed and maintained for many
years. This encompasses technical aspects, such as the definition
of software factory architecture, but also human aspects.

Section 2 introduces the case study of HMI production in its
context. Section 3 presents the four strategies of HMI production
and section 4 analyses production time in order to determine the
most efficient solution. Section 5 exploits this productivity
analysis to recommend techniques and practices for complex
software system development. Section 6 presents further work
and section 7 concludes.

2. Context of the Case Study
The Architecture and Engineering Department (AED) of the
THALES Software Research Group aims at putting the MDA®
vision at work. In this perspective, one activity is the development
of a system-engineering modeling tool called MDSysE [8][14].
MDSysE, standing for Model-Driven System Engineering, is
currently being used by a set of THALES business units for
building complex systems with a model-driven approach, such as
air-traffic management system. From a product-line viewpoint,
the MDSysE baseline can be derived into several variants,
potentially one by business unit project. MDSysE offers a set of
integrated modeling tools: modeling assistance HMIs, model
checking, model refinement and model views generation
(diagrams, files, documentation). To reach that goal, MDSysE
complexity led to the development of core technology tools. A
first category of tools is a set of core MDD tools on top of which
end-user tools are built. For instance, a traceability tool originally
required for refinement implementation in MDSysE can now be
reused by other modeling tools. A second category of tools is a
software factory tooling, mainly with MDSoFa [13], dedicated to
MDD.

MDD Tool instances

MDD Core Technologies

Core MDD Tools
- Traceability, model view tools
- Common Tools
- Execution Framework

Software Factory Tooling
- Core Languages
- Core Patterns
- MDSoFa

Standards

MDA, SysML…

Tools

MDD Tools

Model Driven System Engineering

MDSysE
Metamodels MDSysE Rules

Model Driven Software Engineering

MDSoftE
Metamodels MDSoftE Rules

. . .

MDSysE
for [Project]

. . .

2.1 MDS ol
MDSoFa, st
software fact
to produce l
technologies
are described
notation allo
e.g. MOF to
language allo
Figure 1. MDD Tool Architecture

oFa, a Software Factory To

anding for Model-driven Software Factory, is a
ory environment based on the generative technique
anguages, frameworks and tools in series. Four core
participate in the MDSoFa foundation. 1) Languages
 with MOF-level metamodels [15], and a mapping
ws expressing correspondence between languages,
 UML, DSL to DSL mappings. 2) A rule-based
ws expressing patterns: a rule is composed of (i) a

specification part with a rule context and conditions, (ii) an
implementation part to express rule actions. The specification part
is graphical for readiness whereas the implementation part is
textual for efficiency. 3) A template-based language, for the rule
implementation part, allows code expansion of template-based
expressions with language, mapping, and rule information. 4) To
avoid monolithic production, production results are separated by
concerns, e.g. separating model management from model
checking concern.

These technologies define the minimal set to produce in series
with MDSoFa. MDSoFa is provided with core languages and
patterns. A MDSoFa engine orchestrates the production:
generation by concern, pattern-matching usage to apply rules,
interpretation of template-based expressions in the
implementation parts, packaging for deployment. In addition to
these core technologies, product-line management aspects are
addressed (variability is expressed with rules before and during
the production). All these elements are organized in a MDSoFa
product structure. A product is organized according to the
following viewpoints: 1) language, 2) pattern, 3) variability, 4)
deployment, and 5) production, the whereabouts of production
results. A product can contain sub-products.

Language definition and mapping
Rule-based language
Template-based language
Separation of concerns

MDSoFa Core Technologies
Core Languages
Core Patterns
MDSoFa Engine
Product-Line
MDSoFa Product Structure

MDSoFa Construction
MDSoFa

Input Output

Framework ToolLanguage

A

X
1

Pattern

R

To position MDSysE and MDSoFa, MDSysE is a MDSoFa
instance. MDSoFa takes as input MDSysE metamodels and
patterns to produce the MDSysE instance. But a MDSysE
instance is not a monolithic block; it is the composition of several
MDSoFa instances, such as model checking or HMI for MDSysE,
which are assembled to give the final MDSysE tool. In a recursive
way, by using a bootstrap with core services, MDSoFa is also
instance of itself.
MDSysE (2 years of development with MDSoFa) is used in real
industrial projects, and is seen as a testing case for MDSoFa (18
months of development, with its associated methodology). Here
are some metrics about MDSysE with MDSoFa: 180 metaclasses,
400 associations; 20 metamodels; 25.000 generated methods; one
target modeling-platform and another one for prototyping;
development in multi-user mode; three client THALES Business
Units. The complete usage of the product-line will be operational
soon. A success measure is that MDSysE could not be developed
now without MDSoFa.

2.2 Automated HMIs Production
To evaluate the technical solutions used to improve the
productivity of MDD products, we focus here on a sub-part of

MDSoFa dedicated to the HMI production for user assistance.
About 80% of MDSysE HMIs are specified and generated by
MDSoFa, the other HMIs being manually produced due to their
specificities.
One main function of these HMIs is to manage model element
lifecycle. HMIs are characterized by: i) HMI content definition
(fields, buttons, and icons) and presentation, ii) model element
identification and navigation description in different metamodels,
iii) model element lifecycle of the related model elements (model
element creation / update / deletion can imply creation / update /
deletion of other ones), iv) transaction management, v) model
checking to have consistent metamodels, and vi) user facilities.
HMI generation is complex because there is no systemic
relationship between the model elements involved in an HMI.
Moreover, every HMI has its own content. In this kind of
situation, the first approach of the development teams is to
develop HMIs manually. With a continuously increasing number
of similar HMIs, this would mobilize too many resources
regarding the other key tool functionalities to be developed. As
explained later, the solution is to develop a specification language
capturing HMI description. The interest is twofold: (i) with the
adoption of a common and systematic notation, it opens the way
to automation, and (ii) with the problem abstraction, it avoids
pointless implementation details treated later during the HMI
production.

3. Case Study Analysis
Four strategies have been successively experimented, one
building upon the other, in four stages by the HMI development
team: 1) manual development; 2) manual development with a
framework; 3) automated development with MDSoFa using the
rule-based formalism; and 4) automated development with DSLs
easing the production of rules.

Table 1. Fixed and Unit Cost Metrics

Strategies FC UC

1. Manual 0 5

2. Framework 10 1

3. Rules 13 0.33

4. DSL 16 0.125

Figure 2. MDSoFa Organization

The following subsections describe each strategy along its
associated metrics to measure productivity improvement. As for
the metrics, we identify (i) the fixed cost (FC) to produce at least
one HMI, (ii) the unit cost (UC) per HMI, (iii) the variable cost
(VC) equals to (UC x number of HMIs to be developed), and (iv)
the global cost (GC) equals to (FC + VC). FC and UC metrics are
summed up in table 1, and are used as input to elaborate
production times and profit points metrics presented in tables 2
and 3. The figures are the result of the development of 13
wizards, each containing an average of 4 HMIs, that is to say 52
HMIs. Each FC figure reflects the development time of the
solution from scratch; the difference between two FC figures
being explained by the refactoring time toward the new solution.
UC figures are figures for the development time of HMIs with an
average complexity (neither simple nor complex). Besides,
designers and developers are considered as being familiar with the
used techniques.

3.1 Manual Development of HMI
This strategy is the traditional method of development where
HMIs are manually written. They fulfill the six kinds of HMI
functions described above. Their objective is to assist users in
their modeling tasks, avoiding manual and tedious modeling
work. The main weakness is development and maintenance time:
every HMI development is unique and evolutions are costly.
There is no initial cost (FC = 0) but there is an average of 5 days
of development per HMI (UC = 5).

3.2 Manual Development with Framework
The next strategy is to identify HMI common parts and generalize
them into a framework. With this framework usage, only HMI-
specific query and transformation operations and HMI content
description remain to be manually coded. The interest is to write
and maintain only specific HMI code. Compared to the previous
strategy, the development time spent is divided by 5. After
writing the HMI framework (here, FC = 10 days), the main
weakness is to write and maintain the code for each HMI
(UC = 1).

3.3 Automation with Rules
This strategy consists in abstracting all HMI descriptions
(metamodel navigation, HMI content, constraints) in a declarative
way with rules. As mentioned in subsection 2.1, a rule is
described by a context, a set of conditions, and a set of actions. i)
The context identifies the used model elements and can contain
descriptions in a dedicated language to bring relevant information
in a considered domain. For instance, for the HMI description, a
reduced textual language allows declaring HMI content,
presentation, and constraints. In Figure 3, the XML-like notation
allows declaring a “Define Inheritance” label button. ii)
Conditions are constraints written in a dedicated language, e.g.
OCL. iii) While the context and conditions represent the rule
specification part, actions constitute the implementation part.
Here, we have adopted a textual notation with a template-based
language giving a flexible code production. The code is expanded
in using any metamodel, mapping, rule, and deployment
information.

The interest of this rule-based approach is to clearly differentiate
what is reusable from what is domain-specific. Patterns (generic
rules) have been introduced to capitalize on reusable descriptions,
and mainly on the action part. Pattern adaptations (specific rules)

derived from patterns, specify the context, conditions, and
possibly new actions. Figure 3 depicts these two levels: the
“callbackRule_IOData_To_IOData_Inheritance” specific rule,
which declares here the context to open an HMI for an IOData
inheritance, inherits from a “callbackRule” pattern containing the
recurring solution to open a new HMI. The context is identified
by the “rule.context” link from the rule to the involved model
elements. In practice, when designing a new HMI with this rule
strategy, the designer has only to declare pattern adaptations with
specific rules. No code is to be written. During the production,
MDSoFa consumes specific rules which give sufficient
descriptions to specialize patterns to the context. Template-based
code in the action part of the pattern is transformed into a
contextual code.
The paradigm shift implies a developer activity shift from
development (of code) to design (of rules). The main advantage is
that the reliability of the generated code replaces the error-prone
programming activity. Another interest is maintenance: when
common HMI behavior changes (located in the patterns),
specifications are not affected; a simple re-generation is needed.
However, the main drawback is that declaring specification rules
may in turn become a nuisance.
An initial task is to write the patterns containing the generic HMI
behavior (completely from scratch, FC = 13 days) or to proceed to
a refactoring of the framework defined in the previous strategy
(FC = 10 days + 3 days of refactoring). The specification time for
each HMI with specification rule is divided by 3 (UC = 0.33).

4

Pa
tte

rn

G
en

er
ic

 R
ul

e

callbackRule_IOData_To_IOData_Inheritance

callbackRule

<<metaclass > >
IOData

<<metaclass>>
CompositeData

<<rule.cont t>> ex
{Class}

Pa
tte

rn
 A

da
pt

at
io

n
Sp

ec
ifi

c
R

ul
e

<<rule.context>> LinkToSuperClass <<rule.context>>
{SuperClass} {<btnLabel>Define Inheritance</btnLabel>}

Sub Generalization

*
Super *

3.4 Au
The last s
DSLs. A
and upda
The stren
time (UC
the specif
because
replaced
task is n
strategy (
write the
As shown
DSL strat
It may be
transform

1
3

2

Figure 4. DSL to Rule Specification mapping
tomation with DSLs
trategy is to ease the specification rule description with
DSL captures all and only necessarily criteria to produce
te the specific rules as described in the previous section.
gth of this strategy is to reduce again the specification
 = 0.125), with more safety for the designer to express
ication. Moreover, dialog with the designer is simplified
internal machinery descriptions disappear and are
with human-comprehensive words. However, an initial
eeded to code the DSL HMI based on the previous
FC = 13 days for FC for the rule strategy + 3 days to
DSL HMI).
Figure 3. Example of HMI specification rule
 in Figure 4, there is a continuity between the rule and
egies because a DSL is mapped into one or more rules.
 considered relevant to directly have a [DSL to code]
ation and not a [DSL to Rule] transformation followed

by a [Rule to code] transformation. In fact, the rule language,
which is a lower level DSL, is a pivot language aiming at
capitalizing and assembling patterns with uniformity.

4. Case Study Productivity Analysis
An issue for a project leader is to apply the best development
strategy at a given time, in given project conditions (due time,
quality criteria, reliability of the solution, technology, team
development experience). Regarding the above presented
strategies, it is not straightforward to determine the best strategy
for a given project. A major criterion is the number of similar
assets to be developed, here HMIs, but it may not be sufficient.
The two following tables list the production time for each strategy
(Table 2) and compare strategies to deduce the profit point when
one strategy becomes more profitable than the others (Table 3).
For instance, if the development team has to develop just one
HMI, strategy 1 (manual development) is the most profitable;
starting from three HMIs, strategies 2 (manual development with
a framework) or 3 (automated development with rule) becomes
more profitable; starting from fourteen HMIs, strategy 4 (DSL) is
always the best strategy.

Table 2. Production Time by Strategy

 VC (= FC + nb of HMIs x UC)
Nb of HMIs 0 (FC) 1 3 5 7 10 15

1. Manual 0 5.00 15.00 20.00 35.00 50.00 75.00

2.Framework 10 11.00 13.00 15.00 17.00 20.00 25.00

3. Rules 13 13.33 14.00 14.67 15.33 16.33 18.00

4. DSL 16 16.125 16.375 16.625 16.875 17.250 17.875

Table 3. Production Time Comparison and Profit Point

 PP = Profit Point is when Rate (i) / (j) ≥ 1

 Rate (i) / (j) = time for strategy i / time for strategy j
nb of HMIs 1 3 5 7 10 15 PP

(1) / (2) 0.45 1.15 1.67 2.06 2.50 3.00 3

(1) / (3) 0.38 1.07 1.70 2.28 3.06 4.17 3

(1) / (4) 0.31 0.92 1.50 2.07 2.90 4.2 4

(2) / (3) 0.83 0.93 1.02 1.11 1.22 1.39 5

(2) / (4) 0.68 0.79 0.90 1.01 1.16 1.40 7

(3) / (4) 0.83 0.85 0.88 0.91 0.95 0.95 14

As mentioned above, this case study has been tested on 52 HMIs,
and required 150 specification rules (an average of 2.88 rules per
HMI). According to Table 2, this gives: 260 days for strategy 1,
62 days for strategy 2, 30 days for strategy 3, and 23 days for
strategy 4. So, the software factories technique (strategies 3 and
even more strategy 4) is the most efficient and profitable strategy
for development and maintenance of MDSysE HMIs. The ROI1
(Return On Investment) is even higher in case the number of
HMIs increases.
Table 2 lists the production costs for HMIs produced in series.
However, we must be aware that this does not reflect the

1 ROI compares cost savings on cost of investment. When the

production cost, related to the cost of investment, decreases, the
ROI increases.

complete production cost. HMIs constitute altogether one
MDSysE product, called the MDSysE Wizard product. A
production has to differentiate 1) the unit cost of one asset, here
an HMI, and 2) the product cost, i.e. the production of all HMIs
contained in the MDSysE Wizard product. The product cost is the
sum of (i) VC (the sum of the cost unit of each asset) and all
activities related to build a product (requirements management,
analysis, testing, integration, documentation; tooling aspect, etc.),
and (ii) the tailoring cost of each derived MDSysE Wizard
product. This product cost study is not covered by this paper. On
this subject, the reader can refer to [5].

5. Techniques and Practices
Deducing general conclusions on productivity and ROI
improvement only from this kind of case study would be
premature. For this reason, this section extends this productivity
improvement study in four points covering technical as well as
non-technical aspects of the production process: (i) software
factories objectives must be consistent with the project strategy to
improve the productivity; (ii) productivity measures must be
reliable in order to optimize the production; (iii) assets produced
and consumed during the production process must be organized
for efficient and long time developments, which implies a clear
software factory asset architecture; (iv) and at last, project teams
must improve their software factories awareness and practice in
order to obtain a better production maturity level.

5.1 Consistent Productivity Objectives
Development with software factories is integrated in a consistent
project strategy: product strategy, synergy between customer
expectations, technology, standard strategy, architecture
strategies, legacy systems, and handcrafted practices. Then,
technological objectives of software of factories must meet
project objectives.
The main objectives of software factories are threefold.
(i) Industrialization. Software factories aim at industrializing
software production by reducing software complexity and
favoring software description (abstract raw or complicated
software aspects, reduce tedious and rote tasks). As shown in the
case study, rule-based formalism and DSL are examples of means
toward easing problem expression; irrelevant implementation
details are masked. Industrialization is the result of systematic
production from abstract information of assets, such as code
generation or automated production of different kinds of assets
(models, model transformations, model views, configuration files,
documentation). The maximization of industrialization consists in
automatically building as far as possible a complete modeling
chain from requirements down to the packaging of the produced
assets. (ii) Capitalization. Software factories are a vector of
capitalization, especially for large-scale developments implying
multiple pieces of sharp domain expertise (business, technical, or
process). The stake is to capture and reuse expertise expressed
with patterns in different contexts during software mass-
production. In the case study, the rule-based strategy has shown
an example of clear separation between what is reusable from
what is specific; the interest is the HMI patterns can be reused in
contexts different from MDSysE. (iii) Flexibility. Developers
have to produce multiple products, on schedule and budget, and
face the specification, methodology, standard and technology
evolutions. The stake is twofold: produce variant products from a

same product family, and have durable assets. Regarding the
productivity, software factories are useful to rebuild assets when
patterns or specification parts change and to have ever up-to-date
product versions.
When relying on software factory techniques, the project must be
managed so that its technical objectives and allocated resources
are consistent with these software factory objectives: a) For the
production process maturity, task organization is product-
oriented, process activities must use techniques and practices in
line with the software factories objectives, while architecture
activities must define clear software factory chains and clear asset
architectures; b) Project management must promote software
factory awareness among the project team. For instance, project
members can make the paradigm shift progressively with, at first,
simple applications, and then, over the months, begin to develop
catalogs of patterns, languages and tools consumed and produced
by the software factories tools.

5.2 Productivity Measure
The interest of a productivity measure is to appreciate the
efficiency of a production process and to determine how to
improve it. The metric formulas used in the case study are
inspired from economics. The issue is to find when the minimal
cost is reached to realize the optimum profit. But the cost function
is project-specific and depends on the kind of produced assets.
For instance, the initial cost in building a model refinement
framework is obviously different from an HMI framework; a
learning team is less productive than an experimented one.
Moreover, these metric formulas address only a kind of
productivity measure. For instance, they are unsuitable for the
performance analysis of pattern used during the production,
because the way to realize the measure and their objectives differ.
On this purpose, it becomes useful to elaborate a flexible catalog
of analysis criteria meeting the different kinds of measure. The
interest is to possess criteria to investigate and identify the points
in the production process where productivity can be improved.

5.2.1 Quality catalog for production optimization
Even if software factories are identified as a solution to improve
software productivity, it remains essential to ever go further in
productivity improvement: for instance, what are the assets
(languages, frameworks, and tools), the patterns, the manual and
automated tasks reducing productivity?; what would be the cost
and the profit to automate a manual task?; is the production
scheduling optimal? These kinds of questions should emerge,
especially when unexpected facts are encountered at production
time. For instance, efficient patterns for small models may
become unusable for large ones; over successive productions,
dedicated languages may become inconsistent; growing volume
of generated code may worsen performance of the user tools. In
other words, development teams may face problems of scalability,
consistency, and performance, i.e. problems of software quality.
To address this issue, common criteria must be defined to identify
optimization points. In this perspective, the stake is to establish a
quality catalog for software factories, capitalizing project
experiences.
To organize this catalog, we propose to adopt the three-level
organization defined in the Quality of Services UML profile [17]:
category, characteristic, and dimension. A category is used to
classify characteristics by interest groups. A characteristic

represents a non-functional aspect, such as performance, or
scalability. A dimension is a quantifiable criterion of a
characteristic, such as asset production time.

Table 4. Example of Quality Catalog

Category Characteristics Dimension
Pattern Throughput Mean Time of generation

Asset Availability Mean Time To Rebuild Asset

The table above exemplifies a reduced catalog of two
characteristics that can be put in relation, Throughput and
Availability. For the first category, Pattern, the “Mean Time of
generation” dimension of the Throughput characteristics
determines how much time is necessary to apply a pattern in a
given context. This allows determining the most time-consuming
patterns, which need improvement. For the second category,
Asset, the “Mean Time To Rebuild Asset” dimension on the
Availability characteristics indicates the mean time to rebuild an
asset. Crossing pattern throughput and asset availability
characteristics can determine why an asset generation is long; for
instance, investigations can reveal that a pattern needs
improvement because it does not respect scalability expectations,
or that a metamodel needs to be redesigned, or that it is due to the
MDD platform configuration. Other characteristics should be:
coherence, latency, efficiency, demand, dependability, scalability
[17]; portability (adaptability, installability, replaceability),
maintainability (analyzability, changeability, testability, stability)
[12].
From a process viewpoint, the main activities to put this quality
catalog in practice are the following: 1) Define the quality catalog
for software factories; 2) Apply it during successive productions;
3) If a problem occurs, find and analyze the defaults and then
correct or mitigate them. This method requires regular statistics
updates by auditing the time spent for production with tools and
by the project team members to produce the expected assets: time
for simple to complex language / framework / tool development,
learning curve to create a new DSL or to learn an existing DSL,
pattern development and refactoring time, or regression impact of
pattern and correction time. Defaults and improvement analysis
generally require several iterations, small iterations for pattern
development, or large iterations for product development.
Corrections are the way to elicit new techniques and best
practices. Mitigation means are used when a default cannot be
solved directly but by a work around. This productivity
assessment with a quality catalog formalizes what is generally
intuitive and guides the default tracking thanks to a characteristic
/ dimension structure. Capitalizing on this catalog is essential.

5.2.2 Applying analysis criteria
In possession of this catalog, it remains to know how to use it in
the software factories context. The person responsible of the
productivity analysis establishes formulas based on the quality
catalog and conditions under which they can be applied. But this
person needs to proceed with precaution. For their reliability,
project productivity comparisons must always be based on
constant formulas. For instance, productivity can be based on the
complete development lifecycle time, from inception to
deployment, so that productivity with and without software
factories can be compared. Rates are falsely evaluated when sets

and kinds of measured activities vary. In the case study, FC and
UC figures represent the HMI development time. In practice,
analysis, design and development times are generally merged, and
only a repetitive development is able to isolate the actual
development time. On the other hand, reliability of the
productivity figures depends also on the process maturity. For
iterative development processes with software factories, during
the learning phase, especially for developments with reflexivity,
the separation between what is reusable and what is specific,
between the different phases of architecture, analysis, design, or
development, is not so obvious. Here again, only repetitive tasks
ensure figure reliability. Besides, the objective of the usage of a
measure must be clarified. For instance, in some cases, it may be
useful to separate some activities, such as the specification
activity from the generation activity. However, this measure may
become too detailed: if it is useful for tool performance measure,
it is therefore inappropriate for an asset production measure. If
statistics and regular audits accurate measure, it always remains
necessary to know how to use and interpret them.

5.3 Asset Architecture
After the measure, architecture is a key dimension to be
investigated to industrialize production of complex software
systems. The purpose of architecture is to (i) anticipate
misconceptions as soon as possible to avoid growing costs during
the development and maintenance phases, and (ii) enable
efficient, durable and large-scale software developments. In this
paper, we just focus on a central point of architecture: the asset
architecture.

5.3.1 Asset architecture
Consumption / production relationships between assets define the
backbone of the production and are the support to define key
features of a software factory, such as building blocks and asset
lifecycle. An asset architecture is driven by production objectives
(produce final assets from intermediary ones), but also by
constraints and expected qualities. Constraints are expressed by
contracts, a set of pre- and post-conditions on assets. An example
of pre-condition is “the asset x can be produced when its input
assets are available”. Subsection 5.2.1 lists a set of software
qualities. For meeting availability expectations, for instance, the
number of assets and relationships between assets is minimal.

Generation

PatternLanguageMetalevel

Instance
level

Interpretation

Language, Pattern,
Framework, Tool

Framework,
Tool

Regarding the ass tories, output assets
are instances of in
the generation s
semantics, e.g. th
generation uses
Generation results

An input language has output languages for language mapping or
language variants, such as variability of MDSysE metamodels.
Patterns can be specialized automatically from patterns. For
instance, for MDSysE, some MDSysE model checking patterns
are produced from MDSysE metamodels and context-independent
model checking patterns. A set of patterns can instantiate a
framework which can be enriched and adapted by plug-ins. HMI
production is an example of generated tool, executable in a
modeling environment. MDSofa, instance of MDSoFa, is an
example of tool generating tool.
A key point for managing complex chain of assets is uniformity:
uniformity of language, pattern, but also of structure, service,
protocol, and process. Uniformity eases reusability, integration,
evolution, and avoids managing a large size of heterogeneous
assets. Shared assets are enriched more quickly by diverse
experiences and hence more tested. Moreover, this implies to find
consensus on divergent solutions.
Uniformity favors also reflexivity, with its advantages and its
drawbacks. A special case is the factory retooling when a new
version has side effects on itself: some updates have few impacts
while others are critical, especially at the core level. For retooling,
incremental validations on instances of the factory tool, than
directly on the tool itself, prevent major failures. For instance,
MDSysE has been a testing platform for MDSoFa. Moreover,
experiences with MDSysE have been immediately at the disposal
of MDSoFa because MDSoFa and MDSysE share the same
execution framework and a common pattern library. For the
execution framework, regressions are quickly visible; for the
patterns, regressions are detected at the next generation of
MDSoFa.

5.3.2 Complexity reduction by abstraction
Describe asset architecture becomes essential to manage complex
chains of production. It ensures their consistency and
optimization. Fortunately, software factories and final users do
not see the successive asset transformations but only the final
assets. Regarding the software factory environment, it has to
provide the users with easy and efficient tools for industrializing
software production. In this direction, we believe that high-level
languages, addressed by DSLs, must abstract as far as possible
language, framework, tool, behavior, and platform considerations,
in order to reduce software complexity. This abstraction is
captured by criteria giving sufficient information to deduce the
solution during the asset instantiation, behavior production,
assembly, and packaging steps. In the case study, strategy 4 is a
simple example showing how productivity is improved by DSL,
where internal representation, mechanisms, translation toward the
rule-based formalism, and framework usage are completely
hidden. If the goal is to reduce development and maintenance
time, the issue is to maintain the integrity of the produced assets,
altogether compliant both with the specification defined at the
user level and the production description defined at the metalevel.
At the instance level, typically when the user modifies one
criterion, or at the metalevel when solution implementation
et lifecycle with software fac

Figure 5. Asset Lifecycle
put assets. They are created or updated during
tep. In input, languages respect syntax and
ey are expressed in MOF or with a DSL. The
a set of patterns for the best reusability.
 are languages, patterns, frameworks, and tools.

changes (e.g. variation on metamodels, interfaces, algorithms), all
produced asset instances must be maintained in consequence.

5.3.3 Scheduling
The asset architecture can be optimized whereas the production
time remains long. This may come from a scheduling problem to
build the expected assets. Actually, with exactly the same

elements, time production may completely change in function of
the scheduling strategy. To take an analogy with classical
developments, a C++ makefile generates only the necessary
object and executable files. A makefile takes into account
incremental file updates. The problem is the same for software
factories but with a higher complexity. All along the development
process, assets evolve at different rhythms, and, at a given time,
all assets are not necessarily aligned. Then, to improve the
production logic, it is necessary to: (i) optimize production
branches where some assets can be built in parallel, while others
are built in series; this means also clarifying conditions of
synchronization; (ii) favor partial builds, especially when
generations are long, and avoid useless asset rebuilds when assets
are unchanged; (iii) have checking points before continuing the
production process; for instance, for a product-line, validate the
baseline before building the derived products; (iv) use
configuration management to have consistent assets and avoid
useless rebuilds.

5.4 Improving Team Maturity Level
Now, beyond technical aspects, human factor remains a
determining criterion for industrializing with efficiency
development of complex software systems. Project members
using software factories must be convinced they can do their work
better, quicker, and safer. Tool maturity is a first acceptation
criterion. However, they must integrate this technology and be
software factory aware. By analogy, the way of thinking,
techniques and practices in Java are different from those in LISP.
The way of using software factories, comprehension of related
techniques and practices is central to manage developments with
durability and efficiency. Project members can start with reduced
developments to elicit for instance first patterns and DSLs, and to
figure out production process and asset organization to be settled.
The next stage opens the way of intensive, large-scale and durable
developments meeting quality criteria with the foundation of core
technology, asset architecture, process engineering and measure
criteria. All along this period, a close coaching with an expert,
implied in real situations, is irreplaceable to realize this paradigm
shift. The team work must be also cooperative to better rationalize
and share the same languages, techniques and practices. The team
has to promote agility (understandability, accuracy, consistency,
positive value, and simplicity) [1] and reactivity during the
developments. The team must be also disciplined to keep all kinds
of asset and processes managed.

6. Further Work
Two kinds of activities defined the future work of AED related to
the software factories technique. First, for the MDD tools,
instances of MDSoFa, the objective is to constantly increase the
proportion of tools automatically built, as long as the ROI is
insured. At the factory level with MDSoFa, efforts have to be
focused on two points. (i) All product line aspects related to MDD
development need to be taken into account. The different kinds of
variability that must be addressed are: variability of MDD
methodology definition and tools generation (e.g. MDSysE,
MDSysE for Business Unit X, MDSysE for Project A, etc.),
variability of infrastructure language (e.g. UML™1.5,
UML™2.0, SysML™, etc.), variability of target modeling
platform (e.g. Rational Software Architect, Objecteering/UML,
iLogix Rhapsody). Regarding this last concern, MDSoFA targets
at this stage two platforms, including one only for prototyping. A

medium-term objective is to fully support production to an
additional modeling platform. (ii) MDSoFa has been designed to
address any MDD methodological approach, either of a relatively
small or medium complexity (e.g. MDSysE), or based on a
conceptual framework of a large scope (e.g. DoDAF). So,
MDSoFA architecture must evolve to accept larger methodologies
formalized with voluminous metamodels.

7. Conclusion
MDD projects continuously need to improve their productivity
rates to produce software on budget and schedule meeting quality
criteria. Only a paradigm shift with new generation of tools is
able to meet this expectation. This paper has successively
examined productivity of four strategies to produce HMIs: manual
code production, framework usage, production with a software
factory tool, MDSoFa, and production with a HMI DSL,
revealing software factories usage with DSLs is the most efficient
strategy. However, this statement is not sufficient: projects need
techniques and practices to make this paradigm shift a success.
Firstly, measure is a means to identify where, when and how
productivity with the usage of software factories can be improved.
In this perspective, we proposed the definition of a software
factory quality catalog for productivity assessment that can be
reused and enriched by different projects. Secondly, for large-
scale developments, asset architecture description is central to
define consistent and optimal asset lifecycles from the initial
toward the final assets. For a better reusability and integration, we
encouraged to build assets with uniformity. For improving
productivity and guaranteeing integrity of assets, we recommend
using high-level languages with DSLs. However, human
dimension remains a key factor for software factories adoption.
Using mature factory tools, project team members must be
software factory aware. On that purpose, coaching by a software
factory expert and sharing the same languages, techniques,
practices, and values (agility for efficiency, and discipline for
managed processes) are the best way to improve the maturity
level of the project team.
Regarding the AED tooling, MDSoFa and MDSysE are the result
of an extensive work that spread over a period of three years,
mainly in the frame of MODELWARE which is co-funded by the
European Commission under the “Information Society
Technologies” Sixth Framework Programme. As such, MDSoFa
has reached the quality of an advanced prototype, has proved its
relevance and ROI, and is used to generate most of the MDSysE
toolset used in several THALES real industrial cases. The next
phase is for MDSoFa to reach an industrial quality level.

8. ACKNOWLEDGMENTS
We thank Serge Salicki, head of the Architecture and Engineering
Department of the THALES Software Research Group, the
members of the Architecture and Engineering Department, and
especially Stéphane Bonnet.

9. REFERENCES
[1] Ambler, S., Agile modelling, Effective Practices for eXtreme

Programming and the Unified Process, Wiley, 2002.
[2] Bass, L., Clements, P. Kazman, R., Software architecture in

practice, SEI Series in Software Engineering, 1998

[3] Cook, S., and Kent, S. The Tool Factory, OOPSLA 2003
“Generative Techniques in the context of Model Driven
Architecture” workshop. October 27, 2003.

[4] Clark, T., Evans, A., Sammut, P., Willans, J. Applied
Metamodelling. A foundation for Language Driven
Development. Version 0.1. Xactium, 2004.

[5] Clements, P.C., McGregor, J.D., and Cohen, S.G. The
Structured Intuitive Model for Product Line Economics
(SIMPLE). Technical Report CMU/SEI-2005-TR-003 ESC-
TR-2005-03, Carnegie Mellon Software Engineering
Institute, Pittsburgh, PA, February, 2005.

[6] Czarnecki, K., and Eisenecker, U.W. Generative
Programming, Addison-Wesley, 2000.

[7] Evans, E., Domain-Driven Design, Tackling Complexity in
the Heart of Software, Addison-Wesley, 2004.

[8] Exertier, D., and Normand, V. MDSysE: A Model-Driven
Systems Engineering Approach at Thales. Incose, 2-4
November, 2004.

[9] Greenfield, J., and Short, K. Software Factories: Assembling
Applications with Patterns, Models, Frameworks and Tools,
OOPSLA 2003 “Generative Techniques in the context of
Model Driven Architecture” workshop. October 27, 2003.

[10] Greenfield, J., Short, K., Cook, S., and Kent, S., Software
Factories, Assembling applications with Patterns, Models,
Framework, and Tools, Wiley, 2004.

[11] IEEE Architecture Working Group, IEEE Recommended
Practice for Architectural Description of Software-Intensive
Systems, IEEE Std 1471-2000, IEEE, 2000.

[12] ISO/IEC TR 9126 (1991). International Organization for
Standardization, Geneva. An international standard for
quality factors

[13] Langlois, B., Exertier, D., MDSoFa: a Model-Driven
Software Factory, OOPSLA 2004, MDSD Workshop.
October 25, 2004.

[14] Normand, V., Exertier, D. Model-Driven Systems
Engineering: SysML & the MDSysE Approach at Thales.
Ecole d’été CEA-ENSIETA, Brest, France, September,
2004.

[15] OMG/RFP. Meta Object Facility (MOF) 2.0 Core
Specification, OMG Adopted Specification, ptc/03-10-04,
April 6th, 2003

[16] OMG/RFP. MOF 2.0, Query / Views / Transformation,
Revised Submission, ad/2002-04-10, Version 1.0, 2004/04,
QVT-Merge Group.

[17] OMG. UML™ Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms. Final
adopted specification, ptc/04-09-01. September 16, 2004.

[18] OMG. Systems Modelling Language: SysML. Version 0.3
(first draft). January 12, 2004.

	INTRODUCTION
	Context of the Case Study
	MDSoFa, a Software Factory Tool
	Automated HMIs Production

	Case Study Analysis
	Manual Development of HMI
	Manual Development with Framework
	Automation with Rules
	Automation with DSLs

	Case Study Productivity Analysis
	Techniques and Practices
	Consistent Productivity Objectives
	Productivity Measure
	Quality catalog for production optimization
	Applying analysis criteria

	Asset Architecture
	Asset architecture
	Complexity reduction by abstraction
	Scheduling

	Improving Team Maturity Level

	Further Work
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

