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ABSTRACT 
Productivity improvement is a main issue in the context of large-
scale developments, where produced software needs to meet 
quality criteria, both on budget and schedule. This paper studies 
the introduction of the software factories technique to automate 
and improve production of complex software systems in the 
context of Model-Driven Development (MDD), which is still 
evolving (standards, technologies and tools). To validate this 
technique, a case study presents a progressive paradigm shift from 
a traditional model-driven development toward software factories 
usage. The result is the definition of a technical foundation 
improving productivity that can be enriched by techniques and 
practices enabling intensive production of software systems with 
software factories. 
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1. INTRODUCTION 
To produce high quality software both on budget and schedule, 
companies usually face productivity improvement issue. This is 
particularly true in the context of large-scale systems. This paper 
focuses on the introduction of the software factories technique to 
improve productivity in the MDD context, and on the paradigm 
shift from a manually written set of modeling tools to an intensive 
production of modeling tools with software factories. To 
appreciate this progression, this paper presents a case study of 
modeling assistance HMIs (Human-Machine Interaction) 
production with four successive development strategies: manual 
development, manual development with framework, automated 
development with software factories, and automated development 
with software factories and DSL (Domain-Specific Language). 
The comparison between production times reveals the most 
productive and profitable strategy. But beyond software factories 
adoption, the stake is to determine a set of techniques and 
practices to continue to substantially improve the productivity of 
complex software systems developed and maintained for many 
years. This encompasses technical aspects, such as the definition 
of software factory architecture, but also human aspects. 

Section 2 introduces the case study of HMI production in its 
context. Section 3 presents the four strategies of HMI production 
and section 4 analyses production time in order to determine the 
most efficient solution. Section 5 exploits this productivity 
analysis to recommend techniques and practices for complex 
software system development. Section 6 presents further work 
and section 7 concludes. 

2. Context of the Case Study 
The Architecture and Engineering Department (AED) of the 
THALES Software Research Group aims at putting the MDA® 
vision at work. In this perspective, one activity is the development 
of a system-engineering modeling tool called MDSysE [8][14]. 
MDSysE, standing for Model-Driven System Engineering, is 
currently being used by a set of THALES business units for 
building complex systems with a model-driven approach, such as 
air-traffic management system. From a product-line viewpoint, 
the MDSysE baseline can be derived into several variants, 
potentially one by business unit project. MDSysE offers a set of 
integrated modeling tools: modeling assistance HMIs, model 
checking, model refinement and model views generation 
(diagrams, files, documentation). To reach that goal, MDSysE 
complexity led to the development of core technology tools. A 
first category of tools is a set of core MDD tools on top of which 
end-user tools are built. For instance, a traceability tool originally 
required for refinement implementation in MDSysE can now be 
reused by other modeling tools. A second category of tools is a 
software factory tooling, mainly with MDSoFa [13], dedicated to 
MDD. 
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specification part with a rule context and conditions, (ii) an 
implementation part to express rule actions. The specification part 
is graphical for readiness whereas the implementation part is 
textual for efficiency. 3) A template-based language, for the rule 
implementation part, allows code expansion of template-based 
expressions with language, mapping, and rule information. 4) To 
avoid monolithic production, production results are separated by 
concerns, e.g. separating model management from model 
checking concern. 

These technologies define the minimal set to produce in series 
with MDSoFa. MDSoFa is provided with core languages and 
patterns. A MDSoFa engine orchestrates the production: 
generation by concern, pattern-matching usage to apply rules, 
interpretation of template-based expressions in the 
implementation parts, packaging for deployment. In addition to 
these core technologies, product-line management aspects are 
addressed (variability is expressed with rules before and during 
the production). All these elements are organized in a MDSoFa 
product structure. A product is organized according to the 
following viewpoints: 1) language, 2) pattern, 3) variability, 4) 
deployment, and 5) production, the whereabouts of production 
results. A product can contain sub-products. 
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To position MDSysE and MDSoFa, MDSysE is a MDSoFa 
instance. MDSoFa takes as input MDSysE metamodels and 
patterns to produce the MDSysE instance. But a MDSysE 
instance is not a monolithic block; it is the composition of several 
MDSoFa instances, such as model checking or HMI for MDSysE, 
which are assembled to give the final MDSysE tool. In a recursive 
way, by using a bootstrap with core services, MDSoFa is also 
instance of itself. 
MDSysE (2 years of development with MDSoFa) is used in real 
industrial projects, and is seen as a testing case for MDSoFa (18 
months of development, with its associated methodology). Here 
are some metrics about MDSysE with MDSoFa: 180 metaclasses, 
400 associations; 20 metamodels; 25.000 generated methods; one 
target modeling-platform and another one for prototyping; 
development in multi-user mode; three client THALES Business 
Units. The complete usage of the product-line will be operational 
soon. A success measure is that MDSysE could not be developed 
now without MDSoFa. 

2.2 Automated HMIs Production 
To evaluate the technical solutions used to improve the 
productivity of MDD products, we focus here on a sub-part of 

MDSoFa dedicated to the HMI production for user assistance. 
About 80% of MDSysE HMIs are specified and generated by 
MDSoFa, the other HMIs being manually produced due to their 
specificities. 
One main function of these HMIs is to manage model element 
lifecycle. HMIs are characterized by: i) HMI content definition 
(fields, buttons, and icons) and presentation, ii) model element 
identification and navigation description in different metamodels, 
iii) model element lifecycle of the related model elements (model 
element creation / update / deletion can imply creation / update / 
deletion of other ones), iv) transaction management, v) model 
checking to have consistent metamodels, and vi) user facilities. 
HMI generation is complex because there is no systemic 
relationship between the model elements involved in an HMI. 
Moreover, every HMI has its own content. In this kind of 
situation, the first approach of the development teams is to 
develop HMIs manually. With a continuously increasing number 
of similar HMIs, this would mobilize too many resources 
regarding the other key tool functionalities to be developed. As 
explained later, the solution is to develop a specification language 
capturing HMI description. The interest is twofold: (i) with the 
adoption of a common and systematic notation, it opens the way 
to automation, and (ii) with the problem abstraction, it avoids 
pointless implementation details treated later during the HMI 
production. 

3. Case Study Analysis 
Four strategies have been successively experimented, one 
building upon the other, in four stages by the HMI development 
team: 1) manual development; 2) manual development with a 
framework; 3) automated development with MDSoFa using the 
rule-based formalism; and 4) automated development with DSLs 
easing the production of rules. 

Table 1. Fixed and Unit Cost Metrics 

Strategies FC UC 

1. Manual 0 5 

2. Framework 10 1 

3. Rules 13 0.33 

4. DSL 16 0.125 

Figure 2. MDSoFa Organization 

 
The following subsections describe each strategy along its 
associated metrics to measure productivity improvement. As for 
the metrics, we identify (i) the fixed cost (FC) to produce at least 
one HMI, (ii) the unit cost (UC) per HMI, (iii) the variable cost 
(VC) equals to (UC x number of HMIs to be developed), and (iv) 
the global cost (GC) equals to (FC + VC). FC and UC metrics are 
summed up in table 1, and are used as input to elaborate 
production times and profit points metrics presented in tables 2 
and 3. The figures are the result of the development of 13 
wizards, each containing an average of 4 HMIs, that is to say 52 
HMIs. Each FC figure reflects the development time of the 
solution from scratch; the difference between two FC figures 
being explained by the refactoring time toward the new solution. 
UC figures are figures for the development time of HMIs with an 
average complexity (neither simple nor complex). Besides, 
designers and developers are considered as being familiar with the 
used techniques. 



3.1 Manual Development of HMI 
This strategy is the traditional method of development where 
HMIs are manually written. They fulfill the six kinds of HMI 
functions described above. Their objective is to assist users in 
their modeling tasks, avoiding manual and tedious modeling 
work. The main weakness is development and maintenance time: 
every HMI development is unique and evolutions are costly. 
There is no initial cost (FC = 0) but there is an average of 5 days 
of development per HMI (UC = 5). 

3.2 Manual Development with Framework 
The next strategy is to identify HMI common parts and generalize 
them into a framework. With this framework usage, only HMI-
specific query and transformation operations and HMI content 
description remain to be manually coded. The interest is to write 
and maintain only specific HMI code. Compared to the previous 
strategy, the development time spent is divided by 5. After 
writing the HMI framework (here, FC = 10 days), the main 
weakness is to write and maintain the code for each HMI 
(UC = 1). 

3.3 Automation with Rules 
This strategy consists in abstracting all HMI descriptions 
(metamodel navigation, HMI content, constraints) in a declarative 
way with rules. As mentioned in subsection 2.1, a rule is 
described by a context, a set of conditions, and a set of actions. i) 
The context identifies the used model elements and can contain 
descriptions in a dedicated language to bring relevant information 
in a considered domain. For instance, for the HMI description, a 
reduced textual language allows declaring HMI content, 
presentation, and constraints. In Figure 3, the XML-like notation 
allows declaring a “Define Inheritance” label button. ii) 
Conditions are constraints written in a dedicated language, e.g. 
OCL. iii) While the context and conditions represent the rule 
specification part, actions constitute the implementation part. 
Here, we have adopted a textual notation with a template-based 
language giving a flexible code production. The code is expanded 
in using any metamodel, mapping, rule, and deployment 
information. 

 
 
 
The interest of this rule-based approach is to clearly differentiate 
what is reusable from what is domain-specific. Patterns (generic 
rules) have been introduced to capitalize on reusable descriptions, 
and mainly on the action part. Pattern adaptations (specific rules) 

derived from patterns, specify the context, conditions, and 
possibly new actions. Figure 3 depicts these two levels: the 
“callbackRule_IOData_To_IOData_Inheritance” specific rule, 
which declares here the context to open an HMI for an IOData 
inheritance, inherits from a “callbackRule” pattern containing the 
recurring solution to open a new HMI. The context is identified 
by the “rule.context” link from the rule to the involved model 
elements. In practice, when designing a new HMI with this rule 
strategy, the designer has only to declare pattern adaptations with 
specific rules. No code is to be written. During the production, 
MDSoFa consumes specific rules which give sufficient 
descriptions to specialize patterns to the context. Template-based 
code in the action part of the pattern is transformed into a 
contextual code. 
The paradigm shift implies a developer activity shift from 
development (of code) to design (of rules). The main advantage is 
that the reliability of the generated code replaces the error-prone 
programming activity. Another interest is maintenance: when 
common HMI behavior changes (located in the patterns), 
specifications are not affected; a simple re-generation is needed. 
However, the main drawback is that declaring specification rules 
may in turn become a nuisance. 
An initial task is to write the patterns containing the generic HMI 
behavior (completely from scratch, FC = 13 days) or to proceed to 
a refactoring of the framework defined in the previous strategy 
(FC = 10 days + 3 days of refactoring). The specification time for 
each HMI with specification rule is divided by 3 (UC = 0.33). 
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by a [Rule to code] transformation. In fact, the rule language, 
which is a lower level DSL, is a pivot language aiming at 
capitalizing and assembling patterns with uniformity. 

4. Case Study Productivity Analysis 
An issue for a project leader is to apply the best development 
strategy at a given time, in given project conditions (due time, 
quality criteria, reliability of the solution, technology, team 
development experience). Regarding the above presented 
strategies, it is not straightforward to determine the best strategy 
for a given project. A major criterion is the number of similar 
assets to be developed, here HMIs, but it may not be sufficient. 
The two following tables list the production time for each strategy 
(Table 2) and compare strategies to deduce the profit point when 
one strategy becomes more profitable than the others (Table 3). 
For instance, if the development team has to develop just one 
HMI, strategy 1 (manual development) is the most profitable; 
starting from three HMIs, strategies 2 (manual development with 
a framework) or 3 (automated development with rule) becomes 
more profitable; starting from fourteen HMIs, strategy 4 (DSL) is 
always the best strategy. 

Table 2. Production Time by Strategy 

 VC (= FC + nb of HMIs x UC) 
Nb of HMIs 0 (FC) 1 3 5 7 10 15 

1. Manual 0 5.00 15.00 20.00 35.00 50.00 75.00 

2.Framework 10 11.00 13.00 15.00 17.00 20.00 25.00 

3. Rules 13 13.33 14.00 14.67 15.33 16.33 18.00 

4. DSL 16 16.125 16.375 16.625 16.875 17.250 17.875 

 

Table 3. Production Time Comparison and Profit Point 

 PP = Profit Point is when Rate (i) / (j)  ≥ 1 

 Rate (i) / (j) = time for strategy i / time for strategy j  
nb of HMIs 1 3 5 7 10 15 PP 

(1) / (2) 0.45 1.15 1.67 2.06 2.50 3.00 3 

(1) / (3) 0.38 1.07 1.70 2.28 3.06 4.17 3 

(1) / (4) 0.31 0.92 1.50 2.07 2.90 4.2 4 

(2) / (3) 0.83 0.93 1.02 1.11 1.22 1.39 5 

(2) / (4) 0.68 0.79 0.90 1.01 1.16 1.40 7 

(3) / (4) 0.83 0.85 0.88 0.91 0.95 0.95 14 

 
As mentioned above, this case study has been tested on 52 HMIs, 
and required 150 specification rules (an average of 2.88 rules per 
HMI). According to Table 2, this gives: 260 days for strategy 1, 
62 days for strategy 2, 30 days for strategy 3, and 23 days for 
strategy 4. So, the software factories technique (strategies 3 and 
even more strategy 4) is the most efficient and profitable strategy 
for development and maintenance of MDSysE HMIs. The ROI1 
(Return On Investment) is even higher in case the number of 
HMIs increases. 
Table 2 lists the production costs for HMIs produced in series. 
However, we must be aware that this does not reflect the 

                                                                 
1 ROI compares cost savings on cost of investment. When the 

production cost, related to the cost of investment, decreases, the 
ROI increases. 

complete production cost. HMIs constitute altogether one 
MDSysE product, called the MDSysE Wizard product. A 
production has to differentiate 1) the unit cost of one asset, here 
an HMI, and 2) the product cost, i.e. the production of all HMIs 
contained in the MDSysE Wizard product. The product cost is the 
sum of (i) VC (the sum of the cost unit of each asset) and all 
activities related to build a product (requirements management, 
analysis, testing, integration, documentation; tooling aspect, etc.), 
and (ii) the tailoring cost of each derived MDSysE Wizard 
product. This product cost study is not covered by this paper. On 
this subject, the reader can refer to [5]. 

5. Techniques and Practices 
Deducing general conclusions on productivity and ROI 
improvement only from this kind of case study would be 
premature. For this reason, this section extends this productivity 
improvement study in four points covering technical as well as 
non-technical aspects of the production process: (i) software 
factories objectives must be consistent with the project strategy to 
improve the productivity;  (ii) productivity measures must be 
reliable in order to optimize the production; (iii) assets produced 
and consumed during the production process must be organized 
for efficient and long time developments, which implies a clear 
software factory asset architecture; (iv) and at last, project teams 
must improve their software factories awareness and practice in 
order to obtain a better production maturity level. 

5.1 Consistent Productivity Objectives 
Development with software factories is integrated in a consistent 
project strategy: product strategy, synergy between customer 
expectations, technology, standard strategy, architecture 
strategies, legacy systems, and handcrafted practices. Then, 
technological objectives of software of factories must meet 
project objectives. 
The main objectives of software factories are threefold. 
(i) Industrialization. Software factories aim at industrializing 
software production by reducing software complexity and 
favoring software description (abstract raw or complicated 
software aspects, reduce tedious and rote tasks). As shown in the 
case study, rule-based formalism and DSL are examples of means 
toward easing problem expression; irrelevant implementation 
details are masked. Industrialization is the result of systematic 
production from abstract information of assets, such as code 
generation or automated production of different kinds of assets 
(models, model transformations, model views, configuration files, 
documentation). The maximization of industrialization consists in 
automatically building as far as possible a complete modeling 
chain from requirements down to the packaging of the produced 
assets. (ii) Capitalization. Software factories are a vector of 
capitalization, especially for large-scale developments implying 
multiple pieces of sharp domain expertise (business, technical, or 
process). The stake is to capture and reuse expertise expressed 
with patterns in different contexts during software mass-
production. In the case study, the rule-based strategy has shown 
an example of clear separation between what is reusable from 
what is specific; the interest is the HMI patterns can be reused in 
contexts different from MDSysE. (iii) Flexibility. Developers 
have to produce multiple products, on schedule and budget, and 
face the specification, methodology, standard and technology 
evolutions. The stake is twofold: produce variant products from a 



same product family, and have durable assets. Regarding the 
productivity, software factories are useful to rebuild assets when 
patterns or specification parts change and to have ever up-to-date 
product versions. 
When relying on software factory techniques, the project must be 
managed so that its technical objectives and allocated resources 
are consistent with these software factory objectives: a) For the 
production process maturity, task organization is product-
oriented, process activities must use techniques and practices in 
line with the software factories objectives, while architecture 
activities must define clear software factory chains and clear asset 
architectures; b) Project management must promote software 
factory awareness among the project team. For instance, project 
members can make the paradigm shift progressively with, at first, 
simple applications, and then, over the months, begin to develop 
catalogs of patterns, languages and tools consumed and produced 
by the software factories tools. 

5.2 Productivity Measure 
The interest of a productivity measure is to appreciate the 
efficiency of a production process and to determine how to 
improve it. The metric formulas used in the case study are 
inspired from economics. The issue is to find when the minimal 
cost is reached to realize the optimum profit. But the cost function 
is project-specific and depends on the kind of produced assets. 
For instance, the initial cost in building a model refinement 
framework is obviously different from an HMI framework; a 
learning team is less productive than an experimented one. 
Moreover, these metric formulas address only a kind of 
productivity measure. For instance, they are unsuitable for the 
performance analysis of pattern used during the production, 
because the way to realize the measure and their objectives differ. 
On this purpose, it becomes useful to elaborate a flexible catalog 
of analysis criteria meeting the different kinds of measure. The 
interest is to possess criteria to investigate and identify the points 
in the production process where productivity can be improved. 

5.2.1 Quality catalog for production optimization 
Even if software factories are identified as a solution to improve 
software productivity, it remains essential to ever go further in 
productivity improvement: for instance, what are the assets 
(languages, frameworks, and tools), the patterns, the manual and 
automated tasks reducing productivity?; what would be the cost 
and the profit to automate a manual task?; is the production 
scheduling optimal? These kinds of questions should emerge, 
especially when unexpected facts are encountered at production 
time. For instance, efficient patterns for small models may 
become unusable for large ones; over successive productions, 
dedicated languages may become inconsistent; growing volume 
of generated code may worsen performance of the user tools. In 
other words, development teams may face problems of scalability, 
consistency, and performance, i.e. problems of software quality. 
To address this issue, common criteria must be defined to identify 
optimization points. In this perspective, the stake is to establish a 
quality catalog for software factories, capitalizing project 
experiences. 
To organize this catalog, we propose to adopt the three-level 
organization defined in the Quality of Services UML profile [17]: 
category, characteristic, and dimension. A category is used to 
classify characteristics by interest groups. A characteristic 

represents a non-functional aspect, such as performance, or 
scalability. A dimension is a quantifiable criterion of a 
characteristic, such as asset production time. 

Table 4. Example of Quality Catalog 

Category Characteristics Dimension 
Pattern Throughput Mean Time of generation 

Asset Availability Mean Time To Rebuild Asset 

 
The table above exemplifies a reduced catalog of two 
characteristics that can be put in relation, Throughput and 
Availability. For the first category, Pattern, the “Mean Time of 
generation” dimension of the Throughput characteristics 
determines how much time is necessary to apply a pattern in a 
given context. This allows determining the most time-consuming 
patterns, which need improvement. For the second category, 
Asset, the “Mean Time To Rebuild Asset” dimension on the 
Availability characteristics indicates the mean time to rebuild an 
asset. Crossing pattern throughput and asset availability 
characteristics can determine why an asset generation is long; for 
instance, investigations can reveal that a pattern needs 
improvement because it does not respect scalability expectations, 
or that a metamodel needs to be redesigned, or that it is due to the 
MDD platform configuration. Other characteristics should be: 
coherence, latency, efficiency, demand, dependability, scalability 
[17]; portability (adaptability, installability, replaceability), 
maintainability (analyzability, changeability, testability, stability) 
[12]. 
From a process viewpoint, the main activities to put this quality 
catalog in practice are the following: 1) Define the quality catalog 
for software factories; 2) Apply it during successive productions; 
3) If a problem occurs, find and analyze the defaults and then 
correct or mitigate them. This method requires regular statistics 
updates by auditing the time spent for production with tools and 
by the project team members to produce the expected assets: time 
for simple to complex language / framework / tool development, 
learning curve to create a new DSL or to learn an existing DSL, 
pattern development and refactoring time, or regression impact of 
pattern and correction time. Defaults and improvement analysis 
generally require several iterations, small iterations for pattern 
development, or large iterations for product development. 
Corrections are the way to elicit new techniques and best 
practices. Mitigation means are used when a default cannot be 
solved directly but by a work around. This productivity 
assessment with a quality catalog formalizes what is generally 
intuitive and guides the default tracking thanks to a characteristic 
/ dimension structure. Capitalizing on this catalog is essential. 

5.2.2 Applying analysis criteria 
In possession of this catalog, it remains to know how to use it in 
the software factories context. The person responsible of the 
productivity analysis establishes formulas based on the quality 
catalog and conditions under which they can be applied. But this 
person needs to proceed with precaution. For their reliability, 
project productivity comparisons must always be based on 
constant formulas. For instance, productivity can be based on the 
complete development lifecycle time, from inception to 
deployment, so that productivity with and without software 
factories can be compared. Rates are falsely evaluated when sets 



and kinds of measured activities vary. In the case study, FC and 
UC figures represent the HMI development time. In practice, 
analysis, design and development times are generally merged, and 
only a repetitive development is able to isolate the actual 
development time. On the other hand, reliability of the 
productivity figures depends also on the process maturity. For 
iterative development processes with software factories, during 
the learning phase, especially for developments with reflexivity, 
the separation between what is reusable and what is specific, 
between the different phases of architecture, analysis, design, or 
development, is not so obvious. Here again, only repetitive tasks 
ensure figure reliability. Besides, the objective of the usage of a 
measure must be clarified. For instance, in some cases, it may be 
useful to separate some activities, such as the specification 
activity from the generation activity. However, this measure may 
become too detailed: if it is useful for tool performance measure, 
it is therefore inappropriate for an asset production measure. If 
statistics and regular audits accurate measure, it always remains 
necessary to know how to use and interpret them. 

5.3 Asset Architecture 
After the measure, architecture is a key dimension to be 
investigated to industrialize production of complex software 
systems. The purpose of architecture is to (i) anticipate 
misconceptions as soon as possible to avoid growing costs during 
the development and maintenance phases, and (ii) enable 
efficient, durable and large-scale software developments. In this 
paper, we just focus on a central point of architecture: the asset 
architecture. 

5.3.1 Asset architecture 
Consumption / production relationships between assets define the 
backbone of the production and are the support to define key 
features of a software factory, such as building blocks and asset 
lifecycle. An asset architecture is driven by production objectives 
(produce final assets from intermediary ones), but also by 
constraints and expected qualities. Constraints are expressed by 
contracts, a set of pre- and post-conditions on assets. An example 
of pre-condition is “the asset x can be produced when its input 
assets are available”. Subsection 5.2.1 lists a set of software 
qualities. For meeting availability expectations, for instance, the 
number of assets and relationships between assets is minimal.  
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An input language has output languages for language mapping or 
language variants, such as variability of MDSysE metamodels. 
Patterns can be specialized automatically from patterns. For 
instance, for MDSysE, some MDSysE model checking patterns 
are produced from MDSysE metamodels and context-independent 
model checking patterns. A set of patterns can instantiate a 
framework which can be enriched and adapted by plug-ins. HMI 
production is an example of generated tool, executable in a 
modeling environment. MDSofa, instance of MDSoFa, is an 
example of tool generating tool. 
A key point for managing complex chain of assets is uniformity: 
uniformity of language, pattern, but also of structure, service, 
protocol, and process. Uniformity eases reusability, integration, 
evolution, and avoids managing a large size of heterogeneous 
assets. Shared assets are enriched more quickly by diverse 
experiences and hence more tested. Moreover, this implies to find 
consensus on divergent solutions. 
Uniformity favors also reflexivity, with its advantages and its 
drawbacks. A special case is the factory retooling when a new 
version has side effects on itself: some updates have few impacts 
while others are critical, especially at the core level. For retooling, 
incremental validations on instances of the factory tool, than 
directly on the tool itself, prevent major failures. For instance, 
MDSysE has been a testing platform for MDSoFa. Moreover, 
experiences with MDSysE have been immediately at the disposal 
of MDSoFa because MDSoFa and MDSysE share the same 
execution framework and a common pattern library. For the 
execution framework, regressions are quickly visible; for the 
patterns, regressions are detected at the next generation of 
MDSoFa. 

5.3.2 Complexity reduction by abstraction 
Describe asset architecture becomes essential to manage complex 
chains of production. It ensures their consistency and 
optimization. Fortunately, software factories and final users do 
not see the successive asset transformations but only the final 
assets. Regarding the software factory environment, it has to 
provide the users with easy and efficient tools for industrializing 
software production. In this direction, we believe that high-level 
languages, addressed by DSLs, must abstract as far as possible 
language, framework, tool, behavior, and platform considerations, 
in order to reduce software complexity. This abstraction is 
captured by criteria giving sufficient information to deduce the 
solution during the asset instantiation, behavior production, 
assembly, and packaging steps. In the case study, strategy 4 is a 
simple example showing how productivity is improved by DSL, 
where internal representation, mechanisms, translation toward the 
rule-based formalism, and framework usage are completely 
hidden. If the goal is to reduce development and maintenance 
time, the issue is to maintain the integrity of the produced assets, 
altogether compliant both with the specification defined at the 
user level and the production description defined at the metalevel. 
At the instance level, typically when the user modifies one 
criterion, or at the metalevel when solution implementation 
et lifecycle with software fac

Figure 5. Asset Lifecycle 
put assets. They are created or updated during 
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 are languages, patterns, frameworks, and tools. 

changes (e.g. variation on metamodels, interfaces, algorithms), all 
produced asset instances must be maintained in consequence. 

5.3.3 Scheduling 
The asset architecture can be optimized whereas the production 
time remains long. This may come from a scheduling problem to 
build the expected assets. Actually, with exactly the same 



elements, time production may completely change in function of 
the scheduling strategy. To take an analogy with classical 
developments, a C++ makefile generates only the necessary 
object and executable files. A makefile takes into account 
incremental file updates. The problem is the same for software 
factories but with a higher complexity. All along the development 
process, assets evolve at different rhythms, and, at a given time, 
all assets are not necessarily aligned. Then, to improve the 
production logic, it is necessary to: (i) optimize production 
branches where some assets can be built in parallel, while others 
are built in series; this means also clarifying conditions of 
synchronization; (ii) favor partial builds, especially when 
generations are long, and avoid useless asset rebuilds when assets 
are unchanged; (iii) have checking points before continuing the 
production process; for instance, for a product-line, validate the 
baseline before building the derived products; (iv) use 
configuration management to have consistent assets and avoid 
useless rebuilds. 

5.4 Improving Team Maturity Level 
Now, beyond technical aspects, human factor remains a 
determining criterion for industrializing with efficiency 
development of complex software systems. Project members 
using software factories must be convinced they can do their work 
better, quicker, and safer. Tool maturity is a first acceptation 
criterion. However, they must integrate this technology and be 
software factory aware. By analogy, the way of thinking, 
techniques and practices in Java are different from those in LISP. 
The way of using software factories, comprehension of related 
techniques and practices is central to manage developments with 
durability and efficiency. Project members can start with reduced 
developments to elicit for instance first patterns and DSLs, and to 
figure out production process and asset organization to be settled. 
The next stage opens the way of intensive, large-scale and durable 
developments meeting quality criteria with the foundation of core 
technology, asset architecture, process engineering and measure 
criteria. All along this period, a close coaching with an expert, 
implied in real situations, is irreplaceable to realize this paradigm 
shift. The team work must be also cooperative to better rationalize 
and share the same languages, techniques and practices. The team 
has to promote agility (understandability, accuracy, consistency, 
positive value, and simplicity) [1] and reactivity during the 
developments. The team must be also disciplined to keep all kinds 
of asset and processes managed. 

6. Further Work 
Two kinds of activities defined the future work of AED related to 
the software factories technique. First, for the MDD tools, 
instances of MDSoFa, the objective is to constantly increase the 
proportion of tools automatically built, as long as the ROI is 
insured. At the factory level with MDSoFa, efforts have to be 
focused on two points. (i) All product line aspects related to MDD 
development need to be taken into account. The different kinds of 
variability that must be addressed are: variability of MDD 
methodology definition and tools generation (e.g. MDSysE, 
MDSysE for Business Unit X, MDSysE for Project A, etc.), 
variability of infrastructure language (e.g. UML™1.5, 
UML™2.0, SysML™, etc.), variability of target modeling 
platform (e.g. Rational Software Architect, Objecteering/UML, 
iLogix Rhapsody). Regarding this last concern, MDSoFA targets 
at this stage two platforms, including one only for prototyping. A 

medium-term objective is to fully support production to an 
additional modeling platform. (ii) MDSoFa has been designed to 
address any MDD methodological approach, either of a relatively 
small or medium complexity (e.g. MDSysE), or based on a 
conceptual framework of a large scope (e.g. DoDAF). So, 
MDSoFA architecture must evolve to accept larger methodologies 
formalized with voluminous metamodels. 

7. Conclusion  
MDD projects continuously need to improve their productivity 
rates to produce software on budget and schedule meeting quality 
criteria. Only a paradigm shift with new generation of tools is 
able to meet this expectation. This paper has successively 
examined productivity of four strategies to produce HMIs: manual 
code production, framework usage, production with a software 
factory tool, MDSoFa, and production with a HMI DSL, 
revealing software factories usage with DSLs is the most efficient 
strategy. However, this statement is not sufficient: projects need 
techniques and practices to make this paradigm shift a success. 
Firstly, measure is a means to identify where, when and how 
productivity with the usage of software factories can be improved. 
In this perspective, we proposed the definition of a software 
factory quality catalog for productivity assessment that can be 
reused and enriched by different projects. Secondly, for large-
scale developments, asset architecture description is central to 
define consistent and optimal asset lifecycles from the initial 
toward the final assets. For a better reusability and integration, we 
encouraged to build assets with uniformity. For improving 
productivity and guaranteeing integrity of assets, we recommend 
using high-level languages with DSLs. However, human 
dimension remains a key factor for software factories adoption. 
Using mature factory tools, project team members must be 
software factory aware. On that purpose, coaching by a software 
factory expert and sharing the same languages, techniques, 
practices, and values (agility for efficiency, and discipline for 
managed processes) are the best way to improve the maturity 
level of the project team. 
Regarding the AED tooling, MDSoFa and MDSysE are the result 
of an extensive work that spread over a period of three years, 
mainly in the frame of MODELWARE which is co-funded by the 
European Commission under the “Information Society 
Technologies” Sixth Framework Programme. As such, MDSoFa 
has reached the quality of an advanced prototype, has proved its 
relevance and ROI, and is used to generate most of the MDSysE 
toolset used in several THALES real industrial cases. The next 
phase is for MDSoFa to reach an industrial quality level. 

8. ACKNOWLEDGMENTS 
We thank Serge Salicki, head of the Architecture and Engineering 
Department of the THALES Software Research Group, the 
members of the Architecture and Engineering Department, and 
especially Stéphane Bonnet. 

9. REFERENCES 
[1] Ambler, S., Agile modelling, Effective Practices for eXtreme 

Programming and the Unified Process, Wiley, 2002. 
[2] Bass, L., Clements, P. Kazman, R., Software architecture in 

practice, SEI Series in Software Engineering, 1998 



[3] Cook, S., and Kent, S. The Tool Factory, OOPSLA 2003 
“Generative Techniques in the context of Model Driven 
Architecture” workshop. October 27, 2003. 

[4] Clark, T., Evans, A., Sammut, P., Willans, J. Applied 
Metamodelling. A foundation for Language Driven 
Development. Version 0.1. Xactium, 2004. 

[5] Clements, P.C., McGregor, J.D., and Cohen, S.G. The 
Structured Intuitive Model for Product Line Economics 
(SIMPLE). Technical Report CMU/SEI-2005-TR-003 ESC-
TR-2005-03, Carnegie Mellon Software Engineering 
Institute, Pittsburgh, PA, February, 2005. 

[6] Czarnecki, K., and Eisenecker, U.W. Generative 
Programming, Addison-Wesley, 2000. 

[7] Evans, E., Domain-Driven Design, Tackling Complexity in 
the Heart of Software, Addison-Wesley, 2004. 

[8] Exertier, D., and Normand, V. MDSysE: A Model-Driven 
Systems Engineering Approach at Thales. Incose, 2-4 
November, 2004. 

[9] Greenfield, J., and Short, K. Software Factories: Assembling 
Applications with Patterns, Models, Frameworks and Tools, 
OOPSLA 2003 “Generative Techniques in the context of 
Model Driven Architecture” workshop. October 27, 2003. 

[10] Greenfield, J., Short, K., Cook, S., and Kent, S., Software 
Factories, Assembling applications with Patterns, Models, 
Framework, and Tools, Wiley, 2004. 

[11] IEEE Architecture Working Group, IEEE Recommended 
Practice for Architectural Description of Software-Intensive 
Systems, IEEE Std 1471-2000, IEEE, 2000. 

[12] ISO/IEC TR 9126 (1991). International Organization for 
Standardization, Geneva. An international standard for 
quality factors 

[13] Langlois, B., Exertier, D., MDSoFa: a Model-Driven 
Software Factory, OOPSLA 2004, MDSD Workshop. 
October 25, 2004. 

[14] Normand, V., Exertier, D. Model-Driven Systems 
Engineering: SysML & the MDSysE Approach at Thales. 
Ecole d’été CEA-ENSIETA, Brest, France, September, 
2004. 

[15] OMG/RFP. Meta Object Facility (MOF) 2.0 Core 
Specification, OMG Adopted Specification, ptc/03-10-04, 
April 6th, 2003 

[16] OMG/RFP. MOF 2.0, Query / Views / Transformation, 
Revised Submission, ad/2002-04-10, Version 1.0, 2004/04, 
QVT-Merge Group. 

[17] OMG. UML™ Profile for Modeling Quality of Service and 
Fault Tolerance Characteristics and Mechanisms. Final 
adopted specification, ptc/04-09-01. September 16, 2004. 

[18] OMG. Systems Modelling Language: SysML. Version 0.3 
(first draft). January 12, 2004. 

 
 


	INTRODUCTION
	Context of the Case Study
	MDSoFa, a Software Factory Tool
	Automated HMIs Production

	Case Study Analysis
	Manual Development of HMI
	Manual Development with Framework
	Automation with Rules
	Automation with DSLs

	Case Study Productivity Analysis
	Techniques and Practices
	Consistent Productivity Objectives
	Productivity Measure
	Quality catalog for production optimization
	Applying analysis criteria

	Asset Architecture
	Asset architecture
	Complexity reduction by abstraction
	Scheduling

	Improving Team Maturity Level

	Further Work
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

