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ABSTRACT 
In this paper, we argue for the incorporation of architecture 
analysis techniques in Software Factories. While software 
factories often rely on a domain-specific (or product-line specific) 
architecture, frequently there are some architectural alternatives 
left open. In these situations, architectural analysis, static or 
dynamic is essential. The paper elaborates these concepts and 
shows an example from the domain of avionics systems how this 
can be accomplished.  

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Computer-aided software 
engineering, Object-oriented design methods 

General Terms 
Design, Performance. 

Keywords 
Model-integrated Computing, Software Factories. 

1. INTRODUCTION 
Software Factories configure tools, processes, and content for 
building software product lines [1]. Often, the product lines are 
built using a reference architecture that is instantiated in different 
ways in specific products. The reference architecture may rely on 
a number of common architectural patterns (e.g. 
publish/subscribe, etc.), or it could be based on a very strict 
framework for component composition. In any case, there could 
be architectural decisions that are made by the designers (i.e. the 
“operators” of the factory) and that ultimately effect the 
functional and non-functional properties of the product. For 
instance, allocating components in a different way or relying on 
proxy techniques for local data distribution in real-time embedded 
systems can greatly influence the end-to-end latency in avionics 
systems.   

The difficulty is that the impact of architectural decisions could 
be hard to determine at design time. Especially, if the system is 

large (has, let us say, >1K components), it is very difficult to 
predict whether the resulting system satisfies expectations or not. 
We argue that it is essential to incorporate analytical techniques in 
software factories to assist with the architectural decisions. We 
assume that the components one uses in the factory are not 
necessarily available, but at least some approximations of their 
relevant properties are known (e.g. worst-case execution time). 
Given these assumptions, architectural analysis tools could be 
used to validate architectural decisions. 

In this paper we introduce an illustrative example from the 
domain of distributed (soft) real-time systems. The problem was 
to determine some non-functional properties of a particular 
instance of a domain-architecture. We have developed: (1) a 
domain-specific design modeling language for capturing the 
variability in the domain architecture, (2) a modeling language for 
capturing the analytical model of a given execution platform, (3) 
a translator from the design language into the analysis language, 
(4) the simulation components that approximated the behavior of 
components and the execution platform, (5) a dynamic analysis 
framework that allowed quantity studies via using a discrete-event 
system simulator. We were able to show the impact of 
architectural decisions using this tool, in a quantitative manner. 
We were using our metaprogrammable tools from our work on 
Model-Integrated Computing [2]. 

The approach as presented here makes key contributions to the 
following focal points of Software Factories research:  

1) Verification and Validation: The paper demonstrates an 
analytical technique to help assess architectural compliance 
with system requirements. The architecture of the system is 
described with a domain specific modeling language that 
incorporates the architectural invariants in the form of well-
formedness constraints as well as in the form of 
transformations that capture the dynamic operations 
semantics of the architecture. 

2) Automatic Configuration, Code Generation, and Model 
Transformation: The paper also demonstrates the use of 
model transformations for derivation of analysis models 
from the architecture models. A technique based on graph 
rewriting has been employed for specifying model 
transformations, which is formal in addition to being 
efficient and scalable. 

3) Product line element verification: The techniques 
demonstrated in the paper can be used to address questions 
highly relevant to the users of software factories. For 
instance: “If we include certain features in a particular 
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instance application (i.e. product line element), will the 
system exhibit the right performance or not?” 

We also note that the general approach of deriving analysis 
models from design models using a transformation is applicable 
beyond the realm of distributed real-time embedded systems, 
including information systems. Moreover, the analytical 
formalism of Discrete Event Systems is very general and has been 
employed in modeling and simulation of a large variety of 
complex systems [9]. 

2. CHALLENGE PROBLEM 
Real-time Operating Systems based on the ARINC 653 
specification, are rapidly becoming the operating platform of 
choice for safety critical real-time avionics applications [7]. The 
focal point of the specification is robust partitioning – a 
mechanism for strong isolation of applications, both in time 
(temporal partitioning) and in space (memory partitioning), for 
assuring a high degree of fault containment, ease of verification, 
validation, and certification. A robustly partitioned system allows 
partitions (or application software) with different criticality levels 
to execute on the same processor core without affecting each 
other spatially or temporally.  

Partitions are scheduled on a fixed-cycle basis, with a major time 
frame that is repeated throughout the runtime. Within the major 
time frame each partition may be allocated one or more windows 
– defined by offset from start of major time frame, and duration. 
Thus each partition is assured dedicated and uninterrupted1 access 
to execution resources during its execution window. The static 
schedule must be designed by taking into account periodic 
computational requirements of each partition. Please note that 
within each partition multiple processes may execute concurrently 
and are governed by a priority-based preemptive scheduling 
scheme that is local to the partition, and sharing resources that are 
allocated to the partition. Similar to temporal windowing, 
predetermined areas of memory are allocated to partitions, with at 
most one partition having write access to any particular area of 
memory. 

One of the challenges in systems implemented atop an ARINC 
653 compliant RTOS is in inter-partition communication. For the 
reasons of isolation, and fault containment, the specification does 
not allow any direct/memory-mapped communication across 
partitions. The inter-partition communication must be done using 
the ARINC 653 communication services, and the actual 
communication is performed by an I/O service which executes as 
a system partition governed by the overall partition scheduling. 
The direct implication of this requirement is that the static 
partition schedule, an architectural decision, has a significant 
impact on the communication latencies. We present a small subset 
of an avionics application as a challenge problem2 that illustrates 
this concern, and demonstrates the value of an analytical approach 
in understanding and addressing this concern.  

                                                                 
1 Bus-acknowledgements and time-outs may interrupt one 

partition’s execution even though the events relate to a different 
partition. We note this here since it affects the analysis. 

2 The authors thank Northrop Grumman and USC for the avionics 
problem cited here. 

Consider an avionics system that consists of a number of 
subsystems. Each subsystem is implemented as a separate ARINC 
653 partition. The avionics system has a number of sporadic 
events that need to be processed. A key design objective is to 
establish an upper bound on the arrival rate of such events. The 
particular event processing scenario is to process New Page 
request events from the Multi-Function Display (MFD). By menu 
selection the pilot can request a different page from a particular 
functional unit to be shown on the display. The processing of the 
request involves several subsystems: the MFD display hardware, 
the DisplayManager (DM) subsystem, the PageContentManager 
(PCM) subsystem, the FlightManager (FM) subsystem, and the 
FlightDirector (FD) subsystem. 

 

 
Figure 1: System Latency Flow 

The maximum arrival rate of the New Page request is bounded by 
the minimum latency between the time the pilot selects the menu 
item to request the page and the time the new page has been 
displayed. The minimum latency is determined by the amount of 
time it takes to process the flow of the page request including the 
display of the new page. The lower bound of this processing 
latency is determined by the fact that subsystems execute as 
separate partitions and that inter-partition communication incurs a 
partition offset delay as well as frame delays at the partition 
execution rate. 

3. TOOL CHAIN 
Analogous to manufacturing assembly lines, a software factory 
needs to be configured to support a particular software product 
line. Configuration involves customizing meta-programmable 
tools and integrating them in “tool chains” to support the design 
process for a particular software product line. A tool chain is an 
integrated suite of tools, where the integration is accomplished by 
providing automated transformations from the output of a tool to 
input of another tool. In prior research at ISIS we have developed 
a meta-programmable integration framework, labeled Open Tool 
Integration Framework or OTIF that facilitates creation and 
deployment of tool chains (see [10] for details). Utilizing this 
infrastructure, we have set up a tool chain to support design, 
analysis, and synthesis of the class of systems described above. 
Figure 2 shows a logical architecture and design flow in the 
toolchain. The details of the tools and transformations are 
provided below. 



3.1 Design Modeling 
In this section we briefly describe Avionics Systems Modeling 
Language (AvSML), a multi-aspect Domain-Specific Modeling 
Language that supports modeling of component based Avionics 
applications architected to be deployed on an ARINC 653 
compliant RTOS. This language has been instantiated in the meta-
programmable GME tool, resulting in a domain-specific modeling 
environment that can be used by System Integrators and 
Designers to model avionic systems.  
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Figure 2: Tool Chain 

The key modeling concepts of AvSML can be summarized into 
following categories: 

1. Component (Subsystem) Modeling 
2. Component Interaction Modeling 
3. ARINC 653 Platform Modeling 
4. Deployment Modeling 

Figure 3 shows a (partial) metamodel of Component Modeling 
sub-language of AvSML. Components are defined by modeling 
their interfaces (Connector)3, and their internal behavior. The 
internal behavior of a component is modeled by defining a 
workflow (data and control flow) that includes Connectors, 
PrimitiveFunction and [Compound]Functions, and State 
variables. This in effect captures the internal processing flow of 
the component, from when data/event arrives to a Connector, till 
when results are sent to a Connector. The workflow language (not 
shown in the figure below) is intentionally not Turing complete 
for reasons of analyzability. Please note that the internal 
behaviors of the PrimitiveFunctions can be implemented in a 
Turing complete programming language, however the models 
abstract out those details with a data interface (DataInput, 
DataOutput), and a characterization with respect to execution 
properties. The execution property characterization allows 
modeling the execution time in the form of a statistical 
distribution, and parameters specific to the distribution, for 
example the mean (μ) and variance (σ) in case of a Gaussian 
distribution.   

                                                                 
3 The little curved arrow at the bottom of the class icon, indicates 

a proxy to a class that has been defined in a different paradigm 
sheet (class diagram). 

The Component Interaction Modeling sub-language of AvSML 
allows composing systems by instantiating components, and 
defining their interactions (we refrain from detailing the 
metamodel in the interest of brevity). The interaction semantics 
are defined by the type of Component Connectors participating in 
an interaction. Two types of interaction mechanisms are 
supported: a) Sampled interaction, and b) Queued interaction. The 
sampled interaction implies a form of asynchrony in which the 
source component produces output on its connector which stays 
persistent till a new value is written. The destination component 
samples the connector and reads the most recent value. The 
queued interaction on the other hand implies a loose form of 
synchrony in which output of the source component is queued till 
it is consumed by the destination component. Please note that his 
particular choice of interaction semantics is driven by the 
platform. The ARINC 653 specification supports these two types 
of inter-partition interaction mechanisms, and the challenge 
problem requires implementing components (subsystem) in 
individual partitions, thereby constraining the interaction 
semantics. One may argue here for the need for platform 
independence in the DSML; however we note that the ARINC 
653 specification influences the domain architecture, which in 
turn dictates the DSML.  

 
Figure 3: Component (Subsystem) Modeling 

Figure 4 shows a metamodel of the Platform and Deployment 
Modeling sub-language of AvSML. This sub-language includes 
concepts to model the Partitions, time slots or Windows assigned 
to a partition, InterPartition, and IntraPartition communication 
ports, and inter-partition communication Channels. The 
deployment of application components or subsystems is modeled 
with SubsystemRef , which refers to a Subsystem. For reasons of 
fault-tolerance the deployment modeling also allows specifying 
backup deployments i.e. in addition to the primary deployment, a 
component is also deployed in a different partition/processor as a 
backup (SubsystemBackup) where it stays inactive till a fault 
causes the primary deployment to fail. The sub-language allows 



associating partitions with ComputationalUnits which represent 
processing resources. 
In summary, AvSML allows representation and characterization 
of a component-based Avionics application architected in 
accordance with ARINC 653 specification. 

3.2 Analysis Models 
As illustrated in the challenge problem, our analysis objectives 
are to establish non-functional properties such as end-to-end 
latency, resource utilization etc. Experience indicates that static 
analysis techniques such as RMA fails to adequately address the 
analysis needs of class of systems represented by the challenge 
problem, due to both an overly conservative approximation with 
worst-case execution time, as well as inability to incorporate data 
dependencies. This motivates the need for dynamic analysis 
techniques based on Simulation. Discrete Event Simulators with 
the ability to program the event processing behaviors of 
simulation components have been utilized in a variety of 
performance analyses [9].  

 

 
Figure 4: Platform and Deployment Modeling 

We utilize one such DES based performance simulation tool that 
has been developed at ISIS in another research. In the rest of this 

section we describe the input language of this tool, which defines 
the analysis model. Figure 5 shows a (partial) metamodel of the 
analysis model. As can be expected the analysis metamodel 
abstracts away some of the details of the software engineering 
artifacts, but explicates the details of all computation activities 
that consume processing resource, all communication activities 
that consume bandwidth, and the workflow across these. 

The key concepts here can be summarized as follows. A Partition 
represents allocation of processing resources, and can be 
associated with a ProcessorElement with more than one Window, 
characterized with a Duration, and Offset. A Function represents 
processing activities, and the processing time requirements are 
characterized as a statistical distribution (DistFunc), and a set of 
parameters specific to the distribution (Mean, Min, Max, Mode, 
StdDev). Please note here that the Function construct captures, 
processing activities in general, whether it is processing activity 
in application (see Component Functions in AvSML), or 
processing activity in the platform services which are not 
explicitly represented in the design models but are incorporated 
via the design model to analysis model transformation. The 
DataElement construct facilitates specification of communication, 
and is associated with a NetworkElement (not visible in the 
figure). Please note that the ARINC 653 inter-partition 
communication of necessity involve a memory copy, and may 
often take place across a bus. The Functions produce or consume 
DataElements in the workflow. 

 
Figure 5: Analysis Metamodel 

Next, we briefly describe the derivation of analysis models from 
design models as expressed in a transformation that we have 
developed. Some elements of the mapping are one-to-one and 
fairly straightforward: 

- ComputationUnit in AvSML maps to ProcessorElement  
- Partition, Windows and their association with 

ComputationUnit in AvSML maps to Partition and its 
association with a ProcessorElement through a Window. 
Note here that the syntactic representation of these 
concepts differs in AvSML and the Analysis 
metamodel, for obvious reasons of user convenience 
(relevant to AvSML) vs. conciseness (relevant to 
Analysis metamodel). 



The component workflow in AvSML maps analogously, however, 
some elaboration is performed during mapping. The elaboration 
happens at the communication endpoints. A Function is inserted 
to incorporate the processing overhead of the platform API, as 
well as a DataElement is introduced to capture the 
communication resource requirements. 

3.3 Analysis Engine and Component Models 
Prior to describing the analysis engine and simulation 
components, it is worthwhile to note here that the analysis (or 
simulation) engine is responsible for operationalization of the 
analysis metamodel described above. Thus, from a language 
viewpoint, one can consider the description of the simulation 
components as defining the operational semantics of the analysis 
metamodel. 

Our simulation engine is built atop ADEVS, a public domain 
discrete event simulator developed at University of Arizona [8]. 
ADEVS is implemented as a C++ library that supports the 
construction of discrete event models based on the Parallel DEVS 
formalism [9]. While the details of the DEVS formalism are 
clearly outside the scope of this paper, it can be summarized as a 
collection of concurrently interacting components, the dynamic 
behavior of which is defined in terms of events. Thus, each DEVS 
component implements an event-driven reactive behavior. 
ADEVS designates such components as ‘atomic’ components. 
The behavior of an atomic component is defined by its state 
transition function, its output function, and its time advance 
function. The interface for these behaviors is defined in an 
abstract base class labeled ‘atomic’. All simulation components 
derive from atomic and provide implementation for the behaviors 
listed above. In addition to reactive components, ADEVS also 
allows modeling passive components that represent data or 
tokens. 

The behavior of some key simulation components can be 
summarized as follows: 

Function – The function simulation components has three internal 
states: Idle, InvokedWaiting, InvokedProcessing. The Function 
can receive three types of events: recv_control, proc_req_grant, 
proc_grant_cancel, and can generate three types of events: 
relinquish_control, proc_req, proc_req_done. Additionally, it also 
handles timer events (time advance behavior) from the simulator.  
Initially, a Function is in an Idle state, and is waiting to receive 
control, which can be passed from a prior element in the 
workflow (routed by the workflow engine), or from an external 
generator (mimicking environmental or user stimuli). Once it 
receives the ‘recv_control’ event it emits a ‘proc_req’ event and 
enters the ‘InvokedWaiting’ state. In the ‘InvokedWaiting’ state it 
waits for a ‘proc_req_grant’ event. The processor request can be 
granted depending on whether the partition to which the function 
is mapped is currently sliced in. In case the ‘proc_req_grant’ 
event is received it transitions to the ‘InvokedProcessing’ and 
notifies the ADEVS engine through the time advance interface of 
the required processing time. The ADEVS engine then notifies 
back the Function when the required processing time is complete. 
The Function then emits a ‘relinquish_control’ and a 
‘proc_req_done’ event and transitions to the ‘Idle’ state. It is also 
possible that before the processing time of the Function has 
expired, the Partition to which the Function is mapped can get 
sliced out in which case the Function receives a 

‘proc_grant_cancel’ event. In response to this event the function 
computes the remaining processing time, emits a ‘proc_req’ event 
and transitions to ‘InvokedWaiting’ state.  

Please note that the required processing time is computed based 
on the statistical distribution that characterizes the execution time 
of the function code. In our current implementation data-
dependent execution times can not be handled, however, an 
extension is in progress which would allow characterizing the 
data tokens with additional meta-data, and incorporating user-
defined computation of processing time based on data token 
characteristics. 

Partition – The partition simulation components has three internal 
states: SlicedIn, SlicedInProcessing, and SlicedOut. Partition 
handles four types of input events: slice_in, slice_out, proc_req, 
proc_req_done, and it generates two types of events: 
proc_req_grant, proc_grant_cancel. Partition starts in a 
‘SlicedOut’ state. On receiving a ‘slice_in’ event it transitions to 
the ‘SlicedIn’ state. From the ‘SlicedIn’ state, in response to a 
‘proc_req’ event, it emits a ‘proc_req_grant’ event and transitions 
to a ‘SlicedInProcessing’ state, and marks the Function that is 
currently active. From ‘SlicedInProcessing’, in response to a 
‘proc_req_done’ event it transitions to ‘SlicedIn’ state, while in 
response to a ‘slice_out’ event it emits a ‘proc_grant_cancel’ 
event and transitions to ‘SlicedOut’ state. From ‘SlicedIn’ state it 
transitions to ‘SlicedOut’ state in response to ‘slice_out’ event. 

Processor – The processor simulation component simply 
implements a time slicing scheduler. It cycles through the list of 
windows sorted by their start offset, sends a ‘slice_in’ event to the 
respective partition at the start of the window, notifies the 
simulation engine to wake it up after the window duration, at 
which point it sends a ‘slice_out’ event to the corresponding 
partition. This cycling behavior is repeated for the entire duration 
of the simulation. 

The result of the simulation is an event trace which captures the 
timing of occurrence of each event. A secondary, Matlab-based 
data-mining and post-processing tool bundled with the simulation 
tool performs processing of the event traces to compute end-to-
end latency, communication buffers, and processor utilization.  

4. RESULTS 
The challenge problem briefly described in section 2 was 
subjected to modeling and analysis using the tool chain that we 
described above. 

Figure 6 shows models of the challenge problem in AvSML. We 
modeled each of the subsystems (MFD, DM, PCM, FM, and FD) 
including their interfaces, and their internal workflows. Each 
component (except for MFD, and FD), have two input queued 
ports and two output queued ports. A request that comes in to the 
input port is processed by the workflow, and the results of the 
processing are dispatched via the output ports. For example the 
DM component has one input port through which it receives a 
page request, which it processes and dispatches via its output port 
to the PCM component. The DM component has another input 
port on which it receives NewPage, which it then processes and 
dispatches via another output port to the MFD component. The 
MFD component has one output port through which it generates 
page requests, and an input port through which it receives new 
page. We characterized the execution time requirements of the 



processing functions based on our best understanding of the 
computational requirements of the system, as well as modulated 
these requirements to derive interesting analytical observations. 
We also modeled the interactions between these components as 
described in the challenge problem. The components were 
deployed on a single processor but were distributed across 
multiple partitions i.e. one component was mapped to one 
partition. The analysis question stated in the challenge problem 
can be reformulated with respect to the models as: estimate the 
latency between generation of an output on the PageRequest port 
of the MFD component, and arrival of an input on the NewPage 
port of the MFD component. As we noted earlier that the partition 
schedule can have significant impact on the latency, we 
experimented with different partition schedules in the deployment 
models to substantiate this hypothesis. 

Component
Models

Deployment
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Platform
Models

Component
Models

Deployment
Models

Platform
Models

 
Figure 6: AvSML Models of the Challenge Problem 

Figure 7 shows the analysis models for the challenge problem, 
derived automatically from AvSML models through a model 
transformation. Two views are shown: a) an aggregated workflow 
including functions, and data elements, and b) a partition-
window/processor mapping view. In the aggregated workflow the 
iconic objects with symbol φ are functions, whereas the other 
iconic objects represent data elements. 

 
Figure 7: Analysis Model derived from AvSML Models 

Data elements are characterized with the size requirement for 
communication. Please note the connection topology in this view. 
All the outputs from a component go to a data element, which 
goes into an IOProcess, which then routes it to another data 
element that goes into the input of a component. As we mentioned 

earlier this type of routing is a consequence of the ARINC 653 
specification that mandates that all inter-partition communications 
are performed by an IO Process running in a system partition. 
Please note that the design models do not capture these details, 
and this routing is an example of automatic synthesis of the 
platform details through the transformation. The partition 
mapping view shows all the partitions mapped to a single 
processor, and the connections between Partition/Processor 
capture the windowing details such as offset, and duration. 
These analysis models were generated from the AvSML model 
and were subjected to another transformation, which is purely 
syntactical in nature and as such we refrain from describing its 
details. This transformation takes the analysis model and 
generates a textual configuration file that is sent to the ADEVS 
engine which executes the simulation model, and generates an 
event trace. A Matlab-based post-processing utility tool computes 
end-to-end latency estimates by examining the timestamps of the 
events corresponding to the generation of an event by the MFD 
function into the data-element at its output port, and 
corresponding to the receipt of an event into the data-element at 
its input port. 
In all of the partition scheduling configurations the major time 
frame was 200 ms, and the simulation was run for 100 seconds 
(500 schedule cycles). The chart shown plot the latency on the y-
axis, and the simulation time on x-axis.  
Figure 8 shows latency plots from our first partition scheduling 
configuration. This could be considered a most optimal (with 
respect to latency) partition schedule. The partitions were time 
ordered according to their data dependencies, and an IO partition 
was scheduled between every communicating partitions. Thus the 
entire roundtrip from the MFD to FD and back completes in two 
schedule cycles, and the worst case latency is ~380 ms which is 
under two scheduling cycle time (400 ms). The variances in 
latencies are due to the statistical distribution of the execution 
times. 
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Figure 8: End-to-End Latency Results (Configuration 1) 

Figure 9 shows the result from the second partition scheduling 
configuration. Here we chose a more realistic partition schedule 
which allocates two windows to the IO process two windows to 
the FD process (owing to its periodicity requirements), and one 
window to each of the rest. The windows are not specifically 
arranged to follow the data dependency order. The latency results 
in this configuration demonstrate a 4.5 cycle (~900 ms) round trip 
delay. The histogram chart of latency also conveys a Gaussian 
type of distribution which is what we chose for the execution 
times of processing. The worst case latency in this configuration 
is observed to be 5 cycle (~1000 ms). 
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Figure 9: End-to-End Latency Results (Configuration 2) 

Figure 10 shows the latency results from our third partition 
scheduling configuration. The scheduling configuration in this 
case is the same as the second configuration; however, we 
experimented with the distribution of execution time. We 
increased the variance in the execution time of the FD component. 
Note that while this variance is artificial, this simulates a real 
scheduling jitter that is acknowledged in the specification as 
mentioned in the footnote on page 1. Please note here that due to 
the spread in the execution time of the FD component, it may not 
always finish its execution in a single window, and the rest of the 
processing is finished in the next window allocated to the FD 
partition. The consequence as can be understood from the latency 
plots is a one cycle (200 ms) jitter. Since, the FM partition 
follows the second window of IO partition, which in turn follows 
the second window of the FD partition. If the execution of the FD 
partition is completed in the second partition then the IO partition 
transfers the output to the FM partition in the same scheduling 
cycle. However, in case the execution of the FD partition does not 
complete in the second window, then it is postponed till the first 
window of the next cycle. Thus the FM partition gets the result in 
the next cycle instead of the same cycle which results in a 1 cycle 
jitter. 
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Figure 10: End-to-End Latency Results (Configuration 3) 

This type of jitter in latency may have significant consequences 
depending on the nature of the application. The results shown 
above highlight the ability of the simulation based performance 
analysis in drawing such interesting observations. One caveat has 
to be made: the quality of the results is dependent on the richness 

of the scenarios/configurations posed. This is where arguments 
are typically made for static analytical techniques since they are 
not necessary subject to limitations of the tested scenarios. 
Unfortunately, such techniques can not be applied to the type of 
complex applications represented by the challenge problem 
without gross approximations, and oversimplifications. 

5. RELATED WORK  
Architecture analysis is a well-known concept in the field, but 
often it is restricted to static analysis to check architectural 
compliance [4]. As it is presented in the literature, it assumes the 
use of an Architecture Description Language (ADL), with 
additional tool support. We argue that for the Software Factory 
world, the problem is better solved by using a two-level approach: 
namely using a (1) domain-specific modeling language for 
capturing the design, and a (2) dedicated analysis modeling 
language (with automatic transformation from the first to the 
second). The reason for this is that the design language could hide 
platform-specific details that are irrelevant for the designer (and 
all these can be incorporated in the transformation), and thus 
analysis language could be optimized for the analysis 
environment/tool that is used.  
Previous work has been done on modeling architectural dynamics 
using Statecharts (see, e.g. [2]), and the importance of using 
simulations has been pointed out in [5]. Here we propose 
something different: the dynamic analysis of the entire 
architecture, with automatically generated analysis models. In this 
respect, our work is related to [6], but differs in using domain-
specific design models (instead of UML).  

6. CONCLUSIONS  
We have illustrated how architectural analysis can be done in a 
Software Factory setting, through an example worked out using 
our MIC tools. We claim that analysis, especially quantitative 
analysis should be part of a software factory in order to validate 
architectural decisions in the design. Obviously, a number of 
properties could be checked using other techniques (e.g. 
architectural compliance, interface compliance between 
components, etc.) that we did not elaborate here, but must be 
considered as well.  
Note that early in the design component models could be very 
approximate and the worth of architectural analysis could be 
questioned. In this case, the approximate models may serve as the 
source of requirements for component implementers, because if 
the components are indeed built according to these expectations, 
we have a high degree of confidence in the final product.  
Architectural analysis provides a number of research challenges. 
The issues of scalability, performance modeling of software 
components, the modeling of their dynamics, modeling of 
platforms, are just a few examples. However, we believe answers 
to these questions will lead to better software engineering 
processes that allow us to build complex, large-scale systems that 
will work in real-life as they were expected to work in the design 
phase.  
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