
Designing and Implementing an HL7 Software Factory 
 

Mauro Regio 
Microsoft Corporation 
One Microsoft Way 

Redmond,WA 98052 USA 
+1 (425) 705 3538 

maurore@microsoft.com 

Jack Greenfield 
Microsoft Corporation 
One Microsoft Way 

Redmond,WA 98052 USA 
+1 (425) 703 7575 

jackgr@microsoft.com 
 

ABSTRACT 
In this paper, we share the experience gathered in designing and 
implementing a software factory for healthcare systems based on 
Health Level Seven standard. We discuss the long term vision and 
the scoped down proof of concept developed so far. We also 
outline the challenges encountered in our project and the 
opportunities to widen the scope of the approach to different 
industries and, more in general, to support business to business 
collaboration. 

Keywords 
Software Factories, Domain Specific Modeling, Healthcare, HL7 

1. INTRODUCTION 
The objective of this paper is to share the experience gathered in 
designing and implementing a software factory based on Health 
Level Seven (HL7), a standard for interoperability among 
healthcare organizations. 
The work started almost one year ago with the high level 
specification of the factory, producing a first version of its schema 
and solution architecture, as detailed in [1].  
In its initial phase, the factory targeted the design of HL7 
collaboration ports, which are systems designed to i) be deployed 
at the edge of IT systems of healthcare organizations and ii) 
enable healthcare applications to collaborate in conformance with 
business and technical protocols standardized in HL7 Version 3, 
using a Web Service based communication infrastructure. 
In the second phase, we implemented a first –scoped down– 
version of the HL7 Factory specified in the first phase. The focus 
of this version is the subset of HL7 collaboration port capabilities 
necessary to enable communication among healthcare applications 
through Web Service adapters [2], in conformance with HL7 Web 
Service profiles [3].  
The full scope of the factory, as specified, also included 
development of enterprise application integration adapters 

 to connect existing applications to Collaboration Ports, and 
orchestration of business message exchanges realizing a particular 
collaboration on behalf of line of business applications that were 
not designed to collaborate. 
Our experience in designing and developing HL7 Factory has 
been valuable from two different perspectives. 
In the developing the HL7 Factory we encountered some 
challenges in developing the factory schema, managing the factory 
configuration, understanding how domain specific languages 
would be used and leveraging the tools available at the time in the 
development environment. 
At the same time, we realized that the factory’s scope could be 
widened from collaboration among healthcare applications based 
on HL7 to a more generic notion of collaboration among 
applications based on standardized (or shared) specifications.  
Therefore, we are currently in the process of generalizing the 
approach proven in the initial implementation of the HL7 Factory 
to design and build what we have called the Business 
Collaboration Factory. 

2. SOFTWARE FACTORIES 
Software factories use specific domain knowledge, solution 
architectures, tools and other reusable assets to help their users 
produce specific types of software solutions. A software factory is 
based on three key ideas: a software factory schema, a software 
factory template, and an extensible development environment. 
A software factory configures an extensible development 
environment, such as Eclipse, Borland JBuilder, or Microsoft 
Visual Studio Team System (VSTS), using an installable package 
called a software factory template or guidance package. When 
configured in this way, the development environment becomes a 
specialized facility that accelerates the development of a specific 
type of software solution, such as a user interface or database 
access layer, or perhaps a whole application in a business domain 
like healthcare or homeland security. The software factory 
template is organized by a model called a software factory 
schema. The schema defines one or more viewpoints relevant to 
stakeholders in the production of the target software solutions. 
Each viewpoint defines the life cycle artifacts produced or 
consumed by its stakeholders, the activities they perform against 
those artifacts, and the reusable assets available to support them in 
performing those activities. 
The software factory methodology [4] integrates model-driven 
development (MDD), component-based development (CBD) and 
agile development practices, including the use of patterns and 
pattern languages with models, frameworks and tools. 

 



In order to leverage models effectively for various forms of 
automation, software factories make heavy use of domain-specific 
languages (DSLs). DSL technology is much newer than most of 
the other technologies used in software factories, and relies on 
families of extensible languages. DSL development tools and 
frameworks have been under development for some time in 
academic circles [7], however, and have recently started to appear 
in commercial form [5][8]. 

3. THE HL7 FACTORY 
The HL7 factory automates the development of systems called 
collaboration ports, which enable interoperation among systems in 
the healthcare domain. Specifically, the solutions produced by the 
factory aim to: 

• Realize Interactions defined by the HL7 standard as 
information exchanges that take place between Application 
Roles in response to Trigger Events. Collectively, these 
exchanges support the business goals of a specific use case, 
such as performing a Laboratory Observation. The factory 
automates the production of code that implements these 
interactions by mining information contained in the HL7 
Reference Information Model (HL7 RIM). 

• Enable application-to-application business collaboration 
expressed in terms of these interactions over an open 

standards–based Web Service infrastructure that is 
conformant to a subset of the HL7 V3 Web Service profiles 
[3], namely the Basic, Addressing, Security, and Reliable 
Messaging topics. 

• Enable integration of new or existing applications that were 
not designed: 

1. For HL7 Version 3. 

2. To fulfill a business collaboration. 

3. To communicate over a Web Service infrastructure. 

3.1 Context 
It is important to understand the HL7 factory from two different 
perspectives: production and development. 

3.1.1 Production Context 
The factory end products are HL7 collaboration ports. These ports 
automatically enable disparate healthcare applications to 
collaborate behind and across the firewall using Web Services, 
provided that: 

• At least one of the applications participating in the business 
collaboration will deploy an HL7 collaboration port. The 
other applications may participate through other meains 

Laboratory  Information System 
Context

C
ollaboration Port

C
ollaboration Port

Standardized Web Service
Communication Infrastructure

Hospital Laboratory

Hospital 
Information 

System

Laboratory
Information 

System
Collaboration

HL7 Software Factory Target

Hospital Information System 
Context

HL7 V2 Support

Web Service Support

File-based Communication

Database Communication

HL7 V3 Support

Addressing

Security

Reliable Messaging

Figure 1 : HL7 Factory - Production Context 



• All of the applications participating in the business 
collaboration will conform to HL7 V3 standards for message 
exchange, either natively, or with the help of an  
HL7collaboration port. 

For a business collaboration between a hospital and a laboratory 
system, Figure 1 shows where HL7 collaboration ports sit in 
relation to the systems hosting the interoperating applications. 
Note that collaboration ports are meant to be highly configurable 
to enable general dispatching, while also allowing complex 
message flow orchestration. Thus, ports like the ones shown in 
Figure 1 are configured both in terms of the technical details for a 
specific implementation and deployment and in terms of HL7 
domain definitions and conformance levels. 

3.1.2 Development context 
The purpose of the software factory is to accelerate the 
specification and implementation of collaboration ports. As 
shown in figure 2, the factory combines problem domain 
knowledge supplied by the HL7 Reference Information Model 
and Web Service profiles, with knowledge of the platform 
technology, solution architecture and development process 
supplied by platform documentation and by the factory 
developers.  
As suggested by the illustration, this knowledge is packaged into 

numerous assets, which collectively form the factory template. 
Simply stated, the factory template provides everything required 
to build an HL7 collaboration port, including reference data and 
artifacts, such as message schemas, tools, such as adapters 
generators, and process guidance. 
The factory template must be installed into an Integrated 
Development Environment (IDE), namely Microsoft Visual 
Studio 2005 Team System, before it can be used to produce and 
deploy HL7 collaboration ports. 

4. LEARNING 
As noted above, the purpose of this paper is to describe the 
learning gained in specifying, designing, and implementing the 
HL7 factory. We have grouped the information into two 
categories. The first deals with lessons learned about factory 
development and usage in general. The second deals with insights 
gained regarding the target domain, and with how the factory 
might be generalized to address a broader set of target domains. 

4.1 Challenges and opportunities 
The most significant challenge from the inception of the project 
through to completion was the development and management of 
the factory schema. 
 Producing an initial version of the schema was 
relatively easy [1]. A grid based approach can be effectively used 

HL7 Software 
Factory 

Development

HL7 Collaboration 
Port  Development

Input To

Produces/Deploys

Input To

Input To

Feedback

Produces

Solution Domain Knowledge
Problem Domain Knowledge

HL7 V3
Repository

HL7 V3 Web 
Service 
Profiles

Additional 
Specifications

HL7 Software Factory Template

Run-time
Components

Process 
Guidance Tools

Patterns

Frameworks
Feature 
Models

Recipes/
Wizards

Code 
Templates

DSLs

HL7 Collaboration Port Artifacts

Deployment Artifacts

Collaboration
Port 

Configuration

Development Artifacts

Source Code Test Scripts

Models Other

Run-time
Components

Platform
Capabilities

Solution
Reference

Architecture

Code
Patterns

Figure 2 : HL7 Factory - Development Context 



in this phase, organizing relevant viewpoints into a two 
dimensional matrix with level of abstraction on the vertical axis, 
and life cycle phase on the horizontal axis. 
 However, we quickly realized that the two-dimensional 
matrix was a fairly inadequate representation of the schema, 
especially for the fully scoped version of factory, because a) the 
schema was naturally multidimensional, b) a matrix representation 
does not capture relationships among non adjacent viewpoints, c)  
the graphs of viewpoints were of different types and depths, and 
unfold into nested graphs of different types and depths. 

 
 Nonetheless, dealing with an amorphous graph-based 
representation of the schema required tools were not available. 
Therefore, we implemented the factory schema as a set of two 
dimensional projections of the relevant viewpoints. Each of these 
projections – a graph in its own right - details a specific aspect of 
the factory, effectively projecting it from the multidimensional 
schema in the same way that set of tuples is projected from a 
multidimensional data store to form a two dimensional view.  
 For example, Figure 3 and 4 show two viewpoint 
examples, namely the System Development viewpoint and one 
particular aspect of it: the Software Contract Design –at a lower 
abstraction level. 
 This approach allowed us to produce a version of the 
factory schema that we deemed complete, i.e., it comprehensively 
specified all the artifacts and tools required in the factory template 
to produce the products of the factory. However, it left 
verification of the schema to human inspection, and did not allow 

us to use the schema as metadata to drive the user experience 
within the IDE. 
 
Configuration management was another challenging aspect of 
factory development, from two different perspectives. 
 First, we had to create a configuration XML schema, 
which would be complete in terms of allowing the expression of 
all valid combinations of supported features and/or 
implementation strategies. The XML schema was handcrafted and 
quickly became a maintenance burden, as it was highly sensitive 

to changes in the factory schema and template. 
 Second, we had no tools within the target development 
environment to support the configuration of a specific instance of 
the factory, or the validation of such a configuration, during 
product development. 
 
Specification of the product development process was also a 
challenge in developing the Factory. 
 We had no satisfactory way to formally express the 
process in the factory template, and most importantly no way to 
inject the process as prescriptive guidance into the development 
environment. 
 Although the target development environment did 
support the creation of tasks, and the assignment of tasks to 
members of the development team, we had to rely upon natural 
language documents to describe the development process because 
we had not yet determined how to apply the task management 
features to a factory based product development process. In 
particular, we had not yet determined how to associate tasks with 

 System Development 

System 
Deployment 

System 
Operation 

Project Engineering 

System 
Requirements 

Business 
System Design 

System Engineering  

Business 
Requirements 

 

System 
Design 

Application 
Development 

Software 
Contract 
Design

Figure 3 : System Development Viewpoint 



specific assets supplied by the factory template, how to load the 
tasks from the factory template, or how to configure the tasks for a 
specific product. 
We also found it quite hard to decide whether to provide or not a 
fully fledged domain specific language (DSL) for the 
requirements gathering phase of product development, especially 
given that Microsoft has published a set of DSL tools under the 
umbrella of its Software Factories Initiative. 
 Actually, we knew that a full DSL was not strictly 
necessary, because the relevant use case specifications were 
already available to us in HL7 repository.  What we really 
needed was rather a sophisticated wizard that would help the user 
choose specific use cases (figure 5), application roles, service 
interaction patterns (figure 6), and other standard data elements, 
and navigate through the repository.  
 
Also, the DSL designer technology from Microsoft was very 
immature when we started the project, and adopting it would have 
added significant risk to the project. Although we knew we were 
missing out on the opportunity to provide more sophisticated 
automation, and that the alternative, a wizard based user interface, 
would be not relevant outside the scope of the factory, we decided 
not to use the DSL technology in this phase of the project. 
 Given that we now have a much more consolidated and 
robust technology preview of DSL tools, we may start to 
experiment with DSLs in subsequent versions of the factory. Also, 
even if we did decide to create another wizard based user 
interface, we would very likely design and implement it using the 
DSL tools, instead of developing it from scratch. 
 
The Guidance Automation Toolkit (GAT), another piece of 
enabling technology under the umbrella of the Software Factories 
Initiative at Microsoft, proved quite useful. 
 Simply stated, GAT is an extension to the development 
environment that makes it easy to create rich, integrated user 

experiences around reusable assets like frameworks, components 
and patterns. The resulting Guidance Packages are composed of 
templates, wizards and recipes, which help users build solutions 
in keeping with predefined architectural guidance. 
 In our project, we used GAT as the means of packaging 
and delivering the factory template. It provided an underlying 
model for the  template that was much richer than what the 
development environment itself had to offer. 
 So, recipes have been provided for activities like: HL7 
Web Services Adapter creation, execution of the configuration 
wizard, creation of Web Services contracts and automation of the 
code creation process. 
 Unfortunately, the GAT learning curve is quite steep. Its 
flexibility and customization options are limited and its 
integration with the IDE could have been better. Nevertheless, we 
believe that GAT adoption was a key decision that helped ensure 
project success and significantly reduced the factory development 
time. 

4.2 The potential for generalization 
Although we developed the factory to enable business to business 
collaboration among healthcare applications, it quickly became 
evident that we could apply such a factory to similar scenarios in 
other industries. We came to understand that the real scope of the 
factory should be business collaboration in general, using 
standardized or predefined specifications of interactions, 
application roles, events, Web Service profiles, and other domain 
elements, not just business collaboration in the context of HL7.  
In retrospect, the reason we initially developed such a factory for 
HL7 was that the HL7 standard provided a complete set of easily 
accessible and well defined domain elements. Of course, many 
other standards organizations, such as RosettaNet and UN-
CEFACT have also invested a great deal of effort in specifying 
domain elements to be used by businesses that want to collaborate 
using standardized protocols. Interestingly enough, as far as the 

Web Services Contract Design : 
Software Contract Design 

 XSD Design 

 Application 
Development 

System 
Design 

Web Service 
Contract Design 

Information 
Infrastructure 

Interaction 
Infrastructure 

Web Service 
Protocol Design 

Figure 4 : Software Contract Design Viewpoint 



collaboration protocols and the information they exchange are 
concerned, these standards look very much alike.  

 We therefore concluded that it would be feasible not 
only to build standards based collaboration systems for other 
industries, but also to build a collaboration port factory that can 

Figure 5 : Configuration Wizard - Use Case Selection 

Figure 6 : Configuration Wizard – Service Interaction Patterns Specification 



be customized using business collaboration specifications for 
other industries. Of course, there will be a need for various import 
mechanisms, adapters and model conversions to deal with the 
different concepts used to describe business to business 
collaboration by different standards bodies. Nevertheless, we 
think a generic specification could be used to bridge these 
differences through configuration in a generic business 
collaboration factory. 
At the same time, we recognize that a more generic factory may 
also be quite appealing to corporate developers constructing 
business collaboration systems inside the firewall, and who want a 
more formal approach to specifying and implementing those 
systems in order to guarantee better alignment between business 
goals and a portfolio of resulting IT services. However, in this 
case, we would need to provide enterprise architects with the 
models and tools necessary to support the specification process.  
Finally, we realize that our factory must support the construction 
of collaboration ports for various technology platforms. We 
suspect that this could be accomplished using implementation 
patterns provided with the factory template to decouple the 
specification of the collaboration ports from platform specific 
implementation details. 

4.2.1 Future Development Plans 
Our plans are to exploit the opportunity described above to 
generalize the HL7 factory to form a Business Collaboration 
Factory. We think most of the work required to achieve this 
generalization will reside in the following areas: 

• Provide models and tools to support the specification of 
business collaborations, focusing on information 
schema, business document/messages exchange 
protocols, and possibly business transactions; 

• Define mappings between relevant industry standards 
and our internal model of business collaboration, and 
possibly tools for importing the domain elements they 
define; 

• Introduce another level of configuration in the 
implementation of the collaboration port that will 
enable factory users to target a wider variety of 
technology platforms. 

5. CONCLUSION 
Our experience in developing a factory for HL7 collaboration 
ports has shown that we need to define better frameworks, tools 
and processes to specify the factory schema, to manage factory 
configuration in a flexible and extensible way, and to better 
understand how/when domain specific languages should be used.  
At the same time, initial implementations of extension 
mechanisms like the Guidance Automation Toolkit and DSL 
toolkit have proven their value, filling significant gaps in software 
factory infrastructure, and pointing to future innovation in that 
area. 
We intend to continue to use and improve these tools in the next 
version of the HL7 Factory, as well as in the more generic – cross 
industry – version called the Business Collaboration Factory. 
 

6. REFERENCES 
 
[1] Mauro Regio, Jack Greenfield, Bernie Thuman - A Software 
Factory Approach To HL7 Version 3 Solutions 
http://www.microsoft.com/architecture/library.aspx?pid=think.int
egrate&abver=FEEB2E89-4412-4C58-A7F8-
9B2CA0E0BDAC&id=http://msdn.microsoft.com/architecture/de
fault.aspx?pull=/library/en-us/dnbda/html/HL7SoftFac.asp 
 
[2] Mauro Regio - Web Services Enablement for Healthcare 
HL7 Applications - Web Services Basic Profile Reference 
Implementation; 
http://www.microsoft.com/architecture/library.aspx?pid=think.int
egrate&abver=E9A00024-3DC1-4B6A-BC20-
22716E4D2FEA&id=msdn.microsoft.com/architecture/default.as
px?pull=/library/en-us/dnbda/html/HL7WebServApps.asp 
 
[3] Roberto Ruggeri, Mauro Regio et al. - HL7 Advanced Web 
Service Profiles. 
http://www.hl7.org/v3ballot/html/welcome/environment/index.ht
m 
 
[4] Greenfield and K. Short with S. Cook and S. Kent. - 
Software Factories: Assembling Applications with Patterns, 
Models, Frameworks and Tools. Wiley. 2004 
 
[5] Microsoft Enterprise Framework & Tools Group - Domain 
Specific Languages Toolkit 
http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/defa
ult.aspx 
 
[6] http://www.hl7.org 
 
[7] http://www.isis.vanderbilt.edu/ 
 
[8] http://www.metacase.com/ 
 
[9] Microsoft Patterns and Practices Team - Guidance 
Automation Toolkit (GAT) 
http://lab.msdn.microsoft.com/teamsystem/workshop/gat/default.a
spx  


